Abstract:
A bearing assembly for use in a gas turbine engine is provided. The bearing assembly includes a bearing retainer having an inner portion, an outer portion spaced radially apart from the inner portion, and an intermediate portion connecting the inner portion and the outer portion, wherein the inner portion and the outer portion define a space there-between. The bearing assembly also includes a bearing housing having an extended portion positioned within the space. The bearing assembly also includes a locking assembly comprising a locking plate and an axial keyway that extends axially away from the locking plate. The locking plate is coupled to the bearing retainer and the axial keyway is coupled to the extended portion of the bearing housing.
Abstract:
A retention housing for the outer race of a bearing of a gas turbine engine includes a spring finger housing connected to and overlying a bearing housing that is connected to the outer race of the bearing. The spring finger housing includes an arrangement of spring fingers that yields a lightweight housing capable of withstanding very high radial loads combined with very high torsional windup and axial thrust load. A plurality of edge recesses are defined in the bearing housing and a plurality of lug tabs extending radially from the engine's interface shell limit are disposed in the edge recess to limit the deflection and self-arrest the distortion of the retention housing. A gas turbine engine includes the retention housing described above.
Abstract:
A retention housing for the outer race of a bearing of a gas turbine engine includes a spring finger housing connected to and overlying a bearing housing that is connected to the outer race of the bearing. The spring finger housing includes an arrangement of spring fingers that yields a lightweight housing capable of withstanding very high radial loads combined with very high torsional windup and axial thrust load. A plurality of edge recesses are defined in the bearing housing and a plurality of lug tabs extending radially from the engine's interface shell limit are disposed in the edge recess to limit the deflection and self-arrest the distortion of the retention housing. A gas turbine engine includes the retention housing described above.
Abstract:
A housing for retention of the outer race of a bearing of a gas turbine engine includes an arrangement of spring fingers that yields a lightweight housing capable of withstanding very high radial loads combined with very high torsional windup and axial thrust load. Controlled circumferential gaps on both sides of each spring finger limit the deflection and self-arrest the distortion of the housing. An axial gap is created on the aft end by a portion of the spring finger beam structure that opposes an axial face of the housing and limits the axial distortion. A radial gap created between interface hardware of the housing and the inner retention housing also acts to retain the spring finger housing under load in a radial direction.
Abstract:
In one aspect, a bearing assembly for supporting a rotor shaft relative to a support structure of a gas turbine engine may generally include a bearing including an outer race and an inner race, an outer bearing housing configured to extend radially between the outer race of the bearing and the support structure of the gas turbine engine and an inner bearing support configured to extend radially between the inner race of the bearing and the rotor shaft. In addition, the outer bearing housing and the inner bearing support each include at least one radially extending spring arm such that the outer bearing housing and the inner bearing support collectively form two springs coupled in series between the support structure and the rotor shaft.
Abstract:
A retention housing for the outer race of a bearing of a gas turbine engine includes a spring finger housing connected to and overlying a bearing housing that is connected to the outer race of the bearing. The spring finger housing includes an arrangement of spring fingers that yields a lightweight housing capable of withstanding very high radial loads combined with very high torsional windup and axial thrust load. Dowel pins extending radially from the bearing housing and through the engine's interface shell limit the deflection and self-arrest the distortion of the housing. A gas turbine engine includes the retention housing described above.
Abstract:
A damper bearing assembly for a gas turbine engine is disclosed. The damper bearing assembly is designed to define forward and aft axial gaps which allow for normal deflection under standard operating thrust loads, but then close during a fan blade out event to allow the increased load to transfer to the damper housing. Frictional forces between contacting parts limit torsional windup and increase torsional resistance with increasing load. The damper bearing assembly includes a damper housing configured substantially within a U-shaped spring finger housing and a spanner nut with a radial hook portion coupled to the spring finger housing. The damper housing is coupled to the spring finger housing such that it is substantially confined within the U-shaped void. The spanner nut is coupled to the spring finger housing such that the radial hook portion is configured to limit the deflection of the spring finger housing and damper housing during a fan blade out event.
Abstract:
Bearing assemblies, such as for use with a turbine engine, are disclosed. An example the bearing assembly may include an outer ring comprising an oil drainage aperture defined therein; an inner ring disposed coaxially within the outer ring, the inner ring including an oil supply aperture defined therein; and a plurality of rolling elements engaged between the outer ring and the inner ring, wherein the plurality of rolling elements are constructed of a ceramic material.
Abstract:
A bearing assembly for use in a rotating machine includes a housing and a retention nut threadably coupled to the housing and including a first retention mechanism. The bearing assembly also includes a retention bolt coupled to the housing and including a second retention mechanism configured to engage the first retention mechanism to maintain engagement of the retention nut with the housing.
Abstract:
A housing for retention of the outer race of a bearing of a gas turbine engine includes an arrangement of spring fingers that yields a lightweight housing capable of withstanding very high radial loads combined with very high torsional windup and axial thrust load. Controlled circumferential gaps on both sides of each spring finger limit the deflection and self-arrest the distortion of the housing. An axial gap is created on the aft end by a portion of the spring finger beam structure that opposes an axial face of the housing and limits the axial distortion. A radial gap created between interface hardware of the housing and the inner retention housing also acts to retain the spring finger housing under load in a radial direction.