Abstract:
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Abstract:
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Abstract:
A pyrometry imaging system for monitoring a high-temperature asset which includes at least one component is provided. The system includes a lens element in optical communication with the at least one component. The lens element is configured to receive at least a portion of thermal radiation emitted from the at least one component. The system also includes a view limiting device positioned between the lens element and a dispersive element. The dispersive element is configured to split the at least a portion of thermal radiation emitted into a plurality of wavelengths. The system further includes at least one camera device in optical communication with the dispersive element. The at least one camera device is configured to receive at least one wavelength from the dispersive element.