Abstract:
A segmented annular combustion system includes an alternating arrangement of fuel nozzles and integrated combustor nozzles. The fuel nozzles deliver fuel to the primary combustion zones. The integrated combustor nozzles include an inner liner segment, an outer liner segment, and a fuel injection panel extending between the liner segments. The fuel injection panel includes injection outlets on one or both side walls to deliver a combustible mixture to the secondary combustion zones. Each fuel injection panel, which provides a boundary between adjacent primary and secondary combustion zones, includes an aft end that defines a turbine nozzle. The segmented annular combustion system is part of a gas turbine.
Abstract:
The present application provides a combustor for use with a gas turbine engine. The combustor may include a primary stage nozzle in communication with a linear actuator and a number of stationary secondary nozzles surrounding the primary stage nozzle in whole or in part. The linear actuator varies the position of the primary stage nozzle with respect to the stationary secondary nozzles.
Abstract:
A system includes a gas turbine engine having a first combustor and a second combustor. The first combustor includes a first fuel conduit having a first plurality of injectors. The first plurality of injectors are disposed in a first configuration within the first combustor along a first fuel path, and the first plurality of injectors are configured to route a fuel to a first combustion chamber. The system further includes a second combustor having a second fuel conduit having a second plurality of injectors. The second plurality of injectors are disposed in a second configuration within the second combustor along a second fuel path, and the second plurality of injectors are configured to route the fuel to a second combustion chamber. The second configuration has at least one difference relative to the first configuration.
Abstract:
The present disclosure is directed to an integrated combustor nozzle for a segmented annular combustion system. The integrated combustor nozzle includes an outer liner segment, an inner liner segment, and a fuel injection panel extending radially between the outer liner segment and the inner liner segment. The fuel injection panel includes a first side wall, a second side wall, and a plurality of premixing channels between the first and second side walls, each of the premixing channels having an outlet on one of the first and second side walls. The aft end of the fuel injection panel defines a turbine nozzle.
Abstract:
A system includes a gas turbine engine having a first combustor and a second combustor. The first combustor includes a first fuel conduit having a first plurality of injectors. The first plurality of injectors are disposed in a first configuration within the first combustor along a first fuel path, and the first plurality of injectors are configured to route a fuel to a first combustion chamber. The system further includes a second combustor having a second fuel conduit having a second plurality of injectors. The second plurality of injectors are disposed in a second configuration within the second combustor along a second fuel path, and the second plurality of injectors are configured to route the fuel to a second combustion chamber. The second configuration has at least one difference relative to the first configuration.
Abstract:
Systems and methods for frequency separation in a gas turbine engine are provided herein. The systems and methods for frequency separation in a gas turbine engine may include determining a hot gas path natural frequency, determining a combustion dynamic frequency, and modifying a compressor discharge temperature to separate the combustion dynamic frequency from the hot gas path natural frequency. Specifically, the compressor discharge temperature may be modified by adjusting the inlet guide vanes of the compressor or by adjusting a temperature of air entering the compressor.
Abstract:
The present disclosure is directed to an integrated combustor nozzle for a segmented annular combustion system. The integrated combustor nozzle includes an outer liner segment, an inner liner segment, and a fuel injection panel extending radially between the outer liner segment and the inner liner segment. The fuel injection panel includes a first side wall, a second side wall, and a plurality of premixing channels between the first and second side walls, each of the premixing channels having an outlet on one of the first and second side walls. The aft end of the fuel injection panel defines a turbine nozzle.
Abstract:
A segmented annular combustion system includes an alternating arrangement of fuel nozzles and integrated combustor nozzles. The fuel nozzles deliver fuel to the primary combustion zones. The integrated combustor nozzles include an inner liner segment, an outer liner segment, and a fuel injection panel extending between the liner segments. The fuel injection panel includes injection outlets on one or both side walls to deliver a combustible mixture to the secondary combustion zones. Each fuel injection panel, which provides a boundary between adjacent primary and secondary combustion zones, includes an aft end that defines a turbine nozzle. The segmented annular combustion system is part of a gas turbine.
Abstract:
Systems and methods for frequency separation in a gas turbine engine are provided herein. The systems and methods for frequency separation in a gas turbine engine may include determining a hot gas path natural frequency, determining a combustion dynamic frequency, and modifying a compressor discharge temperature to separate the combustion dynamic frequency from the hot gas path natural frequency.
Abstract:
The present application provides a combustor for use with a gas turbine engine. The combustor may include a primary stage nozzle in communication with a linear actuator and a number of stationary secondary nozzles surrounding the primary stage nozzle in whole or in part. The linear actuator varies the position of the primary stage nozzle with respect to the stationary secondary nozzles.