Abstract:
A method for selectively operating a combustor head end assembly is provided. The combustor head end assembly includes a plurality of bundled tube fuel nozzles. The method includes opening a first fuel circuit of a plurality of fuel circuits. The first fuel circuit of the plurality of fuel circuits is fluidly coupled to a first nozzle group, and the first nozzle group includes one bundled tube fuel nozzle of the plurality of bundled tube fuel nozzles. The method further includes adjusting an airflow received by the plurality of bundled tube fuel nozzles in response to opening the first fuel circuit of the plurality of fuel circuits. The airflow is adjusted based on an emissions output requirement corresponding with the first nozzle group. The method also includes firing the first nozzle group.
Abstract:
The present disclosure is directed to an end cover assembly for a combustor of a turbomachine. The end cover assembly includes an end cover and a bundled tube fuel nozzle assembly positioned downstream from the end cover. The bundled tube fuel nozzle assembly includes a plurality of fuel nozzle tubes. A flame detector sight tube couples to the end cover. The flame detector sight tube is aligned with one of the fuel nozzle tubes.
Abstract:
A method of igniting liquid fuel in a turbomachine combustor is provided. The method includes a step of initiating a flow of gaseous fuel from a gaseous fuel supply to a gaseous fuel nozzle. The method further includes a step of initiating a flow of liquid fuel from a liquid fuel supply to a primary liquid fuel cartridge. After initiating both the flow of gaseous fuel and the flow of liquid fuel, the method includes a step of igniting the flow of gaseous fuel and the flow of liquid fuel with an igniter. The method further includes a step of terminating the flow of gaseous fuel from the gaseous fuel supply to the gaseous fuel nozzle.
Abstract:
A system and method for igniting liquid fuel in a gas turbine combustor is provided. A liquid fuel cartridge, which is located within the head end, is in flow communication with a liquid fuel supply. A gaseous fuel nozzle is located proximate the liquid fuel cartridge and in flow communication with an auxiliary gaseous fuel supply. A controller is in communication with the liquid fuel supply, the auxiliary gaseous fuel supply, and an igniter located proximate or within the head end. The controller is configured to sequentially: initiate a gaseous fuel flow from the auxiliary gaseous fuel supply to the gaseous fuel nozzle; initiate the igniter to combust the gaseous fuel flow; initiate a liquid fuel flow from the liquid fuel supply to the liquid fuel cartridge; and terminate the gaseous fuel flow from the auxiliary gaseous fuel supply.
Abstract:
A combustion system includes a head end comprising a liquid fuel cartridge. The liquid fuel cartridge has liquid fuel injection ports and is configured to produce combustion products via a diffusion flame. A liner is configured to deliver the combustion products from the head end to an aft frame, and an injector having an outlet is located along the liner between the head end and the aft frame. The injector outlet delivers a stream of oxidant inwardly into the liner, such that a mixedness and a velocity of the combustion products are increased prior to the combustion products reaching the aft frame. A method of producing combustion products having characteristics of a premixed flame in a liquid fuel combustion system is also provided herein.
Abstract:
A combustion system includes a head end comprising a liquid fuel cartridge. The liquid fuel cartridge has liquid fuel injection ports and is configured to produce combustion products via a diffusion flame. A liner is configured to deliver the combustion products from the head end to an aft frame, and an injector having an outlet is located along the liner between the head end and the aft frame. The injector outlet delivers a stream of oxidant inwardly into the liner, such that a mixedness and a velocity of the combustion products are increased prior to the combustion products reaching the aft frame. A method of producing combustion products having characteristics of a premixed flame in a liquid fuel combustion system is also provided herein.
Abstract:
A gas turbine includes a compressor section, a combustion section downstream from the compressor section, a turbine section downstream from the combustion section, and a controller. The controller controls the operation of the gas turbine at a reduced load, and is capable of querying a database including multiple sets of operational parameters for the gas turbine correlated with at least one measured output response at each set of operational parameters. One of the sets of operational parameters provides a desired gas turbine load that meets a target level for the output response. Related methods are also disclosed.
Abstract:
A method of igniting liquid fuel in a turbomachine combustor is provided. The method includes a step of initiating a flow of gaseous fuel from a gaseous fuel supply to a gaseous fuel nozzle. The method further includes a step of initiating a flow of liquid fuel from a liquid fuel supply to a primary liquid fuel cartridge. After initiating both the flow of gaseous fuel and the flow of liquid fuel, the method includes a step of igniting the flow of gaseous fuel and the flow of liquid fuel with an igniter. The method further includes a step of terminating the flow of gaseous fuel from the gaseous fuel supply to the gaseous fuel nozzle.
Abstract:
Combustors, gas turbines, and associated methods of operation are provided. A method for operating a combustor includes firing a bundled tube fuel nozzle assembly within a combustion liner of the combustor to generate combustion gases at a first temperature within a first combustion zone length. The method further includes firing a fuel injector downstream from the bundled tube fuel nozzle assembly within the combustion liner of the combustor to generate combustion gases at a second temperature within a second combustion zone length. The first combustion zone length is less than the second combustion zone length. The combustion gases travel through the first combustion zone length in a first time period and through the second combustion zone length in a second time period. The second time period is less than the first time period.
Abstract:
A fuel nozzle for use in a gas turbine includes a pre-mix flow passage for directing a flow segment of a flow of a working fluid through the fuel nozzle. A first swirler vane and a second swirler vane extend within the pre-mix flow passage. The first swirler vane provides a first wake region within the flow segment. The second swirler vane provides a second wake region within the flow segment. A fuel injection peg is disposed downstream from the first swirler vane and the second swirler vane. The fuel injection peg is positioned within the flow segment between the first wake region and the second wake region.