BLADE CONTAINMENT STRUCTURE
    1.
    发明申请

    公开(公告)号:US20200011203A1

    公开(公告)日:2020-01-09

    申请号:US16028867

    申请日:2018-07-06

    Abstract: A blade containment structure surrounding a fan in a turbofan engine is disclosed. The blade containment structure includes a cellular material to absorb energy and contain fragments of a blade thrown outward; an inner shell; a ductile back sheet spaced radially outward from the inner shell, the ductile back sheet and inner shell cooperating to define a nesting area for the cellular material, wherein the cellular material is bound at its radially inner surface by the inner shell and at its outer surface by the ductile back sheet; and a containment blanket overlaid on the ductile back sheet, the containment blanket being of the type effective to contain fragments of the blade that penetrate through the ductile back sheet.

    Composite components having piezoelectric fibers

    公开(公告)号:US11371433B2

    公开(公告)日:2022-06-28

    申请号:US16550721

    申请日:2019-08-26

    Abstract: Composite components and methods for forming composite components are provided. For example, a composite component of a gas turbine engine comprises a composite material, a plurality of piezoelectric fibers, and an anti-icing mechanism. The anti-icing mechanism is in operative communication with the piezoelectric fibers such that the anti-icing mechanism is activated by one or more electrical signals from the piezoelectric fibers. In exemplary embodiments, the composite component is a composite airfoil and the anti-icing mechanism is one or more heating elements. Methods for forming composite components may comprise forming piezoelectric plies comprising piezoelectric fibers embedded in a matrix material; forming reinforcing plies comprising reinforcing fibers embedded in the matrix material; laying up the piezoelectric and reinforcing plies to form a ply layup; and processing the ply layup to form the composite component. Methods including forming a piece of piezoelectric material that is adhered to a composite component also are provided.

    CRUSHABLE SPACER AND BOLTED JOINT FOR A GAS TURBINE ENGINE

    公开(公告)号:US20180340447A1

    公开(公告)日:2018-11-29

    申请号:US15605297

    申请日:2017-05-25

    Abstract: A bolted joint apparatus includes: a first component including a first row of first bolt holes extending therethrough; a second component including a second row of second bolt holes extending therethrough wherein the second bolt holes are aligned coaxially with the first bolt holes, a plurality of fasteners, each of fasteners disposed through aligned pairs of the first and second bolt holes to couple together the first and second components, each of the fasteners including a shank; and crushable spacers disposed around the shanks of the fasteners, the crushable spacers clamped in compression between the fasteners and one of the components, wherein each of the crushable spacers has a tubular body interconnecting first and second enlarged ends, the tubular body being defined by a peripheral wall which incorporates at least one weakening feature.

    Casing having a non-axisymmetric composite wall

    公开(公告)号:US11242866B2

    公开(公告)日:2022-02-08

    申请号:US16051943

    申请日:2018-08-01

    Abstract: Walls of gas turbine engine casings, fan cases, and methods for forming walls, e.g., fan case walls, are provided. For example, a wall comprises a plurality of composite plies arranged in a ply layup. The wall is annular and circumferentially segmented into a plurality of regions that include at least one first region and at least one second region. The ply layup in the first and second regions is different such that the ply layup is non-axisymmetric. An exemplary fan case comprises an annular inner shell, a filler layer, an annular back sheet, and an annular outer layer. The back sheet is circumferentially segmented into a plurality of regions, including at least one first region and at least one second region, and comprises a plurality of composite plies arranged in a ply layup that is different in the first and second regions such that the ply layup is non-axisymmetric.

Patent Agency Ranking