Abstract:
Systems and methods are provided for environment sensing. The system includes a sensor having a sensing material and at least one pair of electrodes in contact with the sensing material, the sensing material configured to be in contact with an ambient environment. The system includes a controller circuit electrically coupled to the at least one pair of electrodes. The controller circuit is configured to generate a stimulation waveform for application to the sensing material of the sensor via the at least one pair of electrodes. The controller circuit is configured to receive an electrical signal from the at least one pair of electrodes representative of an impedance response of the sensing material, and analyze the impedance response of the sensing material at frequencies that provide a linear response of the sensing material to an analyte of interest and at least partially reject effects of interferences.
Abstract:
A photonic sensor system includes: a photodetector; a signal processor coupled to the photodetector; and a sensor structure configured to provide fluid-response selectivity, spatially distribute light, and to receive light from a light source and convey light to the photodetector. The sensor structure includes a plurality of fluid sensitive interferometric nanostructure layers manufactured on a substrate; wherein the plurality of fluid sensitive interferometric nanostructure layers includes alternating high and low porosity layers.
Abstract:
A fluid sensor that includes fluid sensitive interferometric nanostructure layers configured into an open-air resonant structure. Another fluid sensor also includes a polarization sensitive photodetector configured to detect optical contributions of different components of a fluid to the structure. A photonic sensor system includes: a photodetector; a signal processor coupled to the photodetector; and a sensor structure configured to provide fluid-response selectivity, spatially distribute light, and to receive light from a light source and convey light to the photodetector. A method of selective measurement of components in fluid in a process area includes: exposing a sensing structure to the fluid; interrogating the sensing structure with light from outside the process area; measuring a change in optical properties of the sensing structure; correlating the measured change to a stored value; and providing quantitative values of levels of the components in the fluid.
Abstract:
A sensor system for detection of an analyte in an industrial fluid in the presence of interferences which includes: a multivariable inductor-capacitor-resistor resonant transducer with multiple operationally independent outputs; a sensing material composition configured to provide different response patterns to an analyte in the fluid in the presence of interferences; and a signal processor that quantifies the analyte. Also, a sensor system for detection of an analyte that includes: a transducer with multiple operationally independent outputs; a sensing material compositions configured to provide different response patterns to an analyte in the industrial fluid in the presence of interferences; and a signal processor configured to quantify the analyte in the industrial fluid in the presence of interferences. An embodiment of the sensor system detects methane.