Abstract:
A controller for operating a prime mover of a rod pumping unit includes a processor configured to operate the prime mover over a first stroke and a second stroke. The controller is further configured to compute a first motor torque imbalance value for the first stroke and engage adjustment of a counter-balance. The controller is further configured to estimate a second motor torque imbalance value for the second stroke. The controller is further configured to disengage adjustment of the counter-balance during the second stroke upon the second motor torque imbalance value reaching a first imbalance range.
Abstract:
A surface-based separation assembly for use in separating fluid. The surface-based separation assembly includes a gas-liquid separator configured to receive a fluid stream, and configured to separate the fluid stream into a gas stream and a mixed stream of at least two liquids. A liquid-liquid separator is in flow communication with the gas-liquid separator. The liquid-liquid separator is configured to receive the mixed stream from the gas-liquid separator, and is configured to separate the mixed stream into a first liquid stream and a second liquid stream. The assembly further includes a rotatable shaft including a first portion extending through the gas-liquid separator, and a second portion extending through the liquid-liquid separator. The rotatable shaft is configured to induce actuation of the gas-liquid separator and the liquid-liquid separator.
Abstract:
A system includes a downhole separator, a first pump, a second pump, a surface separator, a first tube, and a second tube. The downhole separator is disposed within a first wellbore of a well-pad and configured to generate hydrocarbon stream and water stream from a first production fluid received from first production zone. First pump is disposed within first wellbore and second pump is disposed within a second wellbore of the well-pad. The surface separator is coupled to first and second pumps and configured to receive hydrocarbon stream from downhole separator, using first pump and a second production fluid from second production zone, using second pump and generate oil and water rich stream. First tube is coupled to downhole separator and configured to dispose water stream in a first disposal zone. Second tube is coupled to surface separator and configured to dispose water rich stream in a second disposal zone.
Abstract:
A controller for operating a rod pumping unit includes a processor configured to operate the rod pumping unit at a pumping profile speed. The processor is further configured to compute a first downhole dynamometer card from surface measurements at the rod pumping unit. The processor is further configured to compute a second downhole dynamometer card from the surface measurements. The processor is further configured to validate at least one of the first downhole dynamometer card and the second downhole dynamometer card based on a rod pumping unit condition.
Abstract:
An apparatus for enhancing the coalescence of a dispersed phase from a continuous phase in an emulsion is presented. The apparatus includes at least one inlet for receiving the emulsion, at least one outlet for discharging the emulsion after coalescing the dispersed phase, and at least one article disposed between the inlet and the outlet. The article includes a plurality of regions disposed on a surface in a predefined pattern, wherein a portion of the plurality of regions is substantially wetting with respect to the dispersed phase, and a portion of the plurality of regions is substantially non-wetting with respect to the dispersed phase, and wherein the pattern includes a plurality of inter-connected regions that are substantially non-wetting with respect to the dispersed phase. A related article is also presented.
Abstract:
A system for enhancing a flow of a fluid induced by a rod pumping unit is provided. The system includes one or more sensors and a pumping control unit configured to control stroke movement of the rod pumping unit. The pumping control unit is configured to: (a) initiate at least one stroke of the rod pumping unit; (b) receive sensor data from the one or more sensors; (c) upon determination of a violation of a first set of constraints, make a first adjustment to the current stroke timing, and return to step (a); (d) upon determination of a violation of a second set of constraints, make a second adjustment to the current stroke timing, and return to step (a); and (e) upon determination of no violation of at least one set of constraints make a third adjustment to the current stroke timing, and return to step (a).
Abstract:
An apparatus for enhancing the coalescence of a dispersed phase from a continuous phase in an emulsion is presented. The apparatus includes at least one inlet for receiving the emulsion, at least one outlet for discharging the emulsion after coalescing the dispersed phase, and at least one article disposed between the inlet and the outlet. The article includes a plurality of regions disposed on a surface in a predefined pattern, wherein a portion of the plurality of regions is substantially wetting with respect to the dispersed phase, and a portion of the plurality of regions is substantially non-wetting with respect to the dispersed phase, and wherein the pattern includes a plurality of inter-connected regions that are substantially non-wetting with respect to the dispersed phase. A related article is also presented.
Abstract:
A system for enhancing a flow of a fluid induced by a rod pumping unit is provided. The system includes one or more sensors and a pumping control unit configured to control stroke movement of the rod pumping unit. The pumping control unit is configured to: (a) initiate at least one stroke of the rod pumping unit; (b) receive sensor data from the one or more sensors; (c) upon determination of a violation of a first set of constraints, make a first adjustment to the current stroke timing, and return to step (a); (d) upon determination of a violation of a second set of constraints, make a second adjustment to the current stroke timing, and return to step (a); and (e) upon determination of no violation of at least one set of constraints make a third adjustment to the current stroke timing, and return to step (a).
Abstract:
A surface-based separation assembly for use in separating fluid. The surface-based separation assembly includes a gas-liquid separator configured to receive a fluid stream, and configured to separate the fluid stream into a gas stream and a mixed stream of at least two liquids. A liquid-liquid separator is in flow communication with the gas-liquid separator. The liquid-liquid separator is configured to receive the mixed stream from the gas-liquid separator, and is configured to separate the mixed stream into a first liquid stream and a second liquid stream. The assembly further includes a rotatable shaft including a first portion extending through the gas-liquid separator, and a second portion extending through the liquid-liquid separator. The rotatable shaft is configured to induce actuation of the gas-liquid separator and the liquid-liquid separator.
Abstract:
A centrifugal separator for separating a mixed stream including a first fluid and a second fluid. The separator includes a housing that extends from a first end to a second end. A first flow opening is at the first end, a second flow opening is at the second end, and a third flow opening is at the second end. A rotor assembly within the housing includes a rotor shaft and a cylindrical drum. The cylindrical drum includes an interior including an outer radial portion and an inner radial portion. The outer radial portion is in flow communication with the first flow opening and the second flow opening, and the inner radial portion is in flow communication with the third flow opening. The cylindrical drum is rotatable within the housing such that the first fluid flows along the outer radial portion, and such that the second fluid flows along the inner radial portion.