摘要:
A drilling system includes a rotatable string for connecting with a bit for drilling a borehole, and an active stabilizer which includes a body having an outer surface for contacting a wall of the borehole, and a plurality of actuators connecting the body and the string and capable of driving the string to deviate away from a center of the borehole with a displacement to change a drilling direction. The drilling system further includes a module for measuring direction parameters including at least one of a declination angle and an azimuth angle of the borehole, a module for measuring imbalance parameters including at least one of a lateral force, a bending moment and a torque near the drill bit, and a controller including a calculator for calculating an adjustment needed for the displacement, based on the measured parameters and expected values of these parameters.
摘要:
A sensing and communication system for a gas lift well is provided. The gas lift well includes a casing, production tubing positioned within the casing, and a gas lift valve coupled to the production tubing. The sensing and communication system includes a turbine configured to rotate in response to an injected gas stream flowing through the turbine, wherein the turbine is positioned one of i) within an annulus defined between the production tubing and the casing and ii) within the gas lift valve, an alternator coupled to the turbine and configured to generate electrical power from rotation of the turbine, and at least one sensor coupled to the alternator and configured to operate using the generated electrical power.
摘要:
A system includes a casing-liner, a first downhole separator, a production pump, and a second downhole separator disposed within a wellbore casing disposed in a wellbore. An annular disposal zone is defined between the casing-liner and the wellbore casing. First downhole separator is configured to receive a production fluid from a production zone and generate a hydrocarbon rich stream and a water stream including a solid medium. Production pump is configured to pump the hydrocarbon rich stream from the first downhole separator to a surface unit. Second downhole separator is configured to receive the water stream including the solid medium from the first downhole separator, separate the solid medium to generate a separated water stream, and dispose the solid medium to the annular disposal zone. The system further includes a tube configured to dispose the separated water stream from the second downhole separator to a water disposal zone in wellbore.
摘要:
A sensing system that includes a cylindrical body including an internal flow channel that channels a first fluid therethrough, and a sampling chamber. The sampling chamber is in flow communication with an ambient environment. A venturi device is coupled within the cylindrical body, and the venturi device includes a high pressure portion and a low pressure portion. The low pressure portion is in flow communication with the sampling chamber. A valve is coupled within the cylindrical body and is positionable in at least a first position. A first flow channel is defined between the internal flow channel and the high pressure portion through the valve. The first flow channel channels the first fluid towards the high pressure portion such that the low pressure portion draws a second fluid into the sampling chamber from the ambient environment. A sensor assembly determines characteristics of the second fluid within the sampling chamber.
摘要:
A sensing and communication system for a gas lift well is provided. The gas lift well includes a casing, production tubing positioned within the casing, and a gas lift valve coupled to the production tubing. The sensing and communication system includes a turbine configured to rotate in response to an injected gas stream flowing through the turbine, wherein the turbine is positioned one of i) within an annulus defined between the production tubing and the casing and ii) within the gas lift valve, an alternator coupled to the turbine and configured to generate electrical power from rotation of the turbine, and at least one sensor coupled to the alternator and configured to operate using the generated electrical power.
摘要:
A sensing system that includes a cylindrical body including an internal flow channel that channels a first fluid therethrough, and a sampling chamber. The sampling chamber is in flow communication with an ambient environment. A venturi device is coupled within the cylindrical body, and the venturi device includes a high pressure portion and a low pressure portion. The low pressure portion is in flow communication with the sampling chamber. A valve is coupled within the cylindrical body and is positionable in at least a first position. A first flow channel is defined between the internal flow channel and the high pressure portion through the valve. The first flow channel channels the first fluid towards the high pressure portion such that the low pressure portion draws a second fluid into the sampling chamber from the ambient environment. A sensor assembly determines characteristics of the second fluid within the sampling chamber.
摘要:
A system includes a downhole rotary separator located within the well formation and configured to generate a hydrocarbon rich stream and a first water stream from a well fluid obtained from a production zone. The system also includes an electrical submersible pump disposed within the well formation and operatively coupled to the downhole rotary separator, wherein the electrical submersible pump is configured to transfer the hydrocarbon rich stream to a surface of the earth. The system further includes a surface separator located on the surface of earth and operatively coupled to generate oil and a second water stream from the hydrocarbon rich stream. The system also includes a hydraulic motor disposed within the well formation and operatively coupled to the downhole rotary separator, wherein the hydraulic motor is configured to drive the downhole rotary separator using a drive fluid comprising the hydrocarbon rich stream or the second water stream.
摘要:
A rotary steerable drilling system includes a collar, a drill bit, and a bit shaft connecting the drill bit to the collar. The bit shaft is coupled to the collar through a joint capable of transmitting a torque from the collar to the bit shaft and is swingable with respect to the collar around the joint. The system, further includes first eccentric wheel and second eccentric wheel coupled to the bit shaft and rotatable to swing the bit shaft with respect to the collar around the joint to change a drilling direction, a controller for controlling the first eccentric wheel and second eccentric wheel to harmoniously rotate such that the swing of the bit shaft substantially compensates rotation of the bit shaft, and an active stabilizer mounted on the bit shaft and capable of pushing the bit shaft to deviate to cause a lateral displacement and a tilt angle of the drill bit.
摘要:
A radiation detector useable in a downhole tool configured to be positioned in a borehole includes a printed circuit board and at least one detector element coupled to the printed circuit board. The at least one detector element includes a semiconductor direct conversion material for directly converting gamma rays into electrical signals. The semiconductor direct conversion material includes a cathode surface and an anode surface. In addition, the at least one detector element includes a cathode operatively connected to the cathode surface, and an anode operatively coupled to the anode surface. The radiation detector also includes a voltage source coupled to the printed circuit board and configured to provide a voltage to the at least one detector element.
摘要:
A downhole measurement tool configured to be run through a bore includes a source and a 3-component receiver. The source is configured to emit a source signal, which may be a compressional or a shear wave, into a volume of material surrounding the bore. The source signal propagates through the volume of material surrounding the bore and reflects off of features disposed within the volume of material surrounding the bore. The three-component receiver includes a first element, a second element, and a third element. The first element is oriented in a first plane, orthogonal to an axis of the bore, and receives a first component of the set of reflections of the source signal. The second element is oriented in the first plane, orthogonal to the first element, and receives a second component of the set of reflections of the source signal. The third element is oriented parallel to the axis and receives a third component of the set of reflections of the source signal.