Abstract:
A fuel distribution manifold for a combustor of a gas turbine includes an annular flange having an outer surface that extends circumferentially around the flange. A primary fuel plenum extends circumferentially within the flange. A first orifice and a second orifice extend radially through the outer surface of the flange to provide for fluid communication into the primary fuel plenum. The first orifice includes an inlet that is adjacent to the outer surface. The second orifice includes an inlet that is adjacent to the outer surface. A fuel distribution cap extends partially across the outer surface of the flange. The fuel distribution cap includes an inlet port. A fuel distribution plenum is at least partially defined within the fuel distribution cap. The fuel distribution plenum is in fluid communication with the inlet port and with the first orifice inlet and the second orifice inlet.
Abstract:
A support frame for assembling a combustion module for a gas turbine includes a base plate disposed at a bottom end of the support frame and a support plate that is vertically separated from the base plate by one or more vertical support members. The support plate defines an opening that is sized to allow a portion of the combustion module to pass therethrough. A support block extends vertically from the base plate towards the support plate where the support block defines one or more fastener holes for connecting an aft end of a combustion liner of the combustion module to the support block. A central support column extends vertically from the base plate towards the support plate. A horizontal support extends radially outward from the central support column to align the combustion liner with the opening in the support plate.
Abstract:
A downstream nozzle for use in a combustor that includes an inner radial wall defining a combustion zone downstream of a primary nozzle and an outer radial wall surrounding the inner radial wall so to form a flow annulus therebetween. The downstream nozzle may include: an injector tube extending between the outer radial wall and the inner radial wall; a first plenum adjacent to the injector tube, and, inboard of the ceiling, a floor disposed between the inner radial wall and the outer radial wall. A feed passage may connect the first plenum to an inlet formed outboard of the outer radial wall and impingement ports may be formed through the floor of the first plenum.
Abstract:
A support frame for assembling a combustion module for a gas turbine includes a base plate disposed at a bottom end of the support frame and a support plate that is vertically separated from the base plate by one or more vertical support members. The support plate defines an opening that is sized to allow a portion of the combustion module to pass therethrough. A support block extends vertically from the base plate towards the support plate where the support block defines one or more fastener holes for connecting an aft end of a combustion liner of the combustion module to the support block. A central support column extends vertically from the base plate towards the support plate. A horizontal support extends radially outward from the central support column to align the combustion liner with the opening in the support plate.
Abstract:
A fuel injector assembly includes a shroud defining a fuel manifold therein. The fuel manifold is fluidly coupled to a fuel line to receive a fuel therefrom. The fuel injector assembly further includes a center body and a plurality of vanes operatively coupling the center body to the shroud. Each vane of the plurality of vanes is circumferentially spaced from circumferentially adjacent vanes to define at least one passage therebetween for routing of air therethrough. Each of the plurality of vanes has at least one outlet hole in fluid communication with the fuel manifold and at least one passage of the at least one passage for expulsion of the fuel into the at least one passage for mixing with the air. A fuel injector outlet is defined by an inner wall of the fuel injector assembly and positioned to direct a fuel-air mixture out of the fuel injector assembly.
Abstract:
A fuel distribution manifold for a combustor of a gas turbine includes an annular flange having an outer surface that extends circumferentially around the flange. A primary fuel plenum extends circumferentially within the flange. A first orifice and a second orifice extend radially through the outer surface of the flange to provide for fluid communication into the primary fuel plenum. The first orifice includes an inlet that is adjacent to the outer surface. The second orifice includes an inlet that is adjacent to the outer surface. A fuel distribution cap extends partially across the outer surface of the flange. The fuel distribution cap includes an inlet port. A fuel distribution plenum is at least partially defined within the fuel distribution cap. The fuel distribution plenum is in fluid communication with the inlet port and with the first orifice inlet and the second orifice inlet.