Abstract:
A glass sheet press forming station (32) and method for press forming hot glass sheets with transverse curvature is performed by initially limiting the central forming of a glass sheet (G) between its end portions upon pickup from a roll conveyor to an upper mold (38) and prior to press forming with an associated lower mold (66) to prevent central area optical distortion of the press formed glass sheet.
Abstract:
A quench arrangement for quenching glass sheets includes a main quench station having upper and lower main quench heads for performing a primary quench operation on a glass sheet, a first lower secondary quench head located downstream of the main quench station, and a second lower secondary quench head located downstream of the first lower secondary quench head. The arrangement further includes an upper secondary quench system positioned above the first and second lower secondary quench heads, and the upper secondary quench system is cooperable with the lower secondary quench heads to perform further cooling of the glass sheet. The arrangement further includes a conveyor located above the second lower secondary quench head for moving the glass sheet away from the second lower secondary quench head.
Abstract:
A glass sheet forming method utilizes first and second upper molds and a lower mold to provide three stage forming. The glass is curved on the upper mold in the first stage but retains straight line elements transverse to the curvature. Transfer of the initially formed glass sheet from the first upper mold to the lower mold then provides the second stage of gravity forming and the glass sheet is then press formed between the second upper mold and the lower mold in the third stage which reduces optical distortion in the central viewing area of the formed glass sheet. In one embodiment the glass sheet is moved horizontally on the lower mold, and in another embodiment the glass sheet is moved horizontally on the first upper mold.
Abstract:
Apparatus (54) for positioning glass sheets for forming includes positioners (55) that are moved slower than the speed of glass sheet conveyance to provide rotational adjustment of a glass sheet into alignment above a forming mold (52) under the operation of a controller (78). The forming mold (52) is moved upwardly for the forming in a pressing manner against a downwardly facing upper mold (58). Both preformed and flat glass sheets can be positioned by different embodiments of the apparatus.
Abstract:
An articulated lower mold arrangement for use with an upper mold includes a mold portion configured to bend a heated glass sheet. The mold portion has a first end, a sharp bend area proximate the first end for bending an end portion of the glass sheet, and a second end opposite the first end and spaced away from the sharp bend area. The arrangement may further include a first guide member connected to the mold portion at a first location proximate the first end, and a second guide member connected to the mold portion at a second location proximate the second end and spaced away from the sharp bend area. The mold portion and the guide members are cooperable to allow the first end of the mold portion to move from a lowered position to a raised position in order to move the end portion of the glass sheet upwardly.
Abstract:
A lift device for lifting a glass sheet in a glass processing system includes a lift jet array having peripheral lift jet outlets and inner lift jet outlets disposed inwardly of the peripheral lift jet outlets. Furthermore, each lift jet outlet is operable to allow gas to flow toward the glass sheet. The lift device also includes a control unit for controlling operation of the lift jet outlets, and the control unit is configured to commence operation of at least one of the inner lift jet outlets prior to commencing operation of at least one of the peripheral lift jet outlets.
Abstract:
A mold apparatus for bending a glass sheet includes a main frame structure and a first mold arrangement having a first mold and a guide frame connected to the first mold. A first guide member of the guide frame is guidable by the frame structure such that it is inhibited from moving laterally in any direction, and a second guide member of the guide frame is guidable by the frame structure such that it is movable laterally away from the first guide member due to thermal expansion. The apparatus further includes a second mold arrangement including a second mold and a frame that supports the second mold such that the second mold is movable laterally relative to the frame. A sensor is also included for sensing position of one of the molds to determine whether the one mold is in a suitable position for mating with the other mold.
Abstract:
A support structure for supporting a heated glass sheet in connection with a bending operation includes a frame, a support ring adjustably supported on the frame for supporting a peripheral portion of the glass sheet, and multiple rib assemblies associated with the frame. Each rib assembly includes a laterally extending rib supported on the frame and multiple spaced apart support members connected to the rib and configured such that at least a portion of each support member is adjustable with respect to the rib. Furthermore, each support member is configured to contact a respective inner portion of the glass sheet to support the respective inner portion of the glass sheet until the glass sheet has been sufficiently cooled.
Abstract:
A system (10) for forming glass sheets includes a glass location sensing assembly (80) having a fluid switch (82) that is actuated by a roller conveyed glass sheet (G) to control operation of transfer apparatus (69) that transfers the glass sheet from the roller conveyor (22) to a forming mold (48) at a design position for forming. A frame of the sensing assembly (80) supports a carriage (124) on which the fluid switch (82) is mounted for lateral movement with respect to the direction of conveyance of the glass sheet (G) so as to sense its leading extremity. A lateral positioner (130) adjusts the lateral position of the carriage (124) and the fluid switch (82) mounted on the carriage.
Abstract:
A glass sheet press forming station (32) and method for press forming hot glass sheets with transverse curvature is performed by initially limiting the central forming of a glass sheet (G) between its end portions upon pickup from a roll conveyor to an upper mold (38) and prior to press forming with an associated lower mold (66) to prevent central area optical distortion of the press formed glass sheet.