Abstract:
An integrated circuit (IC) structure is disclosed. The structure can include: a first heat dissipative element disposed between a pair of shallow trench isolations (STIs) in a substrate, and a first polysilicon resistor in a polysilicon layer positioned over the substrate and the pair of STIs, the first polysilicon resistor in thermal communication with the first heat dissipative element. The structure can also include a second polysilicon resistor in the polysilicon layer, the second polysilicon resistor laterally separated from the first polysilicon resistor, and the first heat dissipative element in thermal communication with the first polysilicon resistor and the second polysilicon element. The structure can also include a second heat dissipative element, the second heat dissipative element in a different directional orientation than the first heat dissipative element.
Abstract:
Disclosed is a method of manufacturing integrated circuit (IC) chips, which includes forming routing structure(s) that facilitate process limiting yield (PLY) testing of test devices. A routing structure includes an array of link-up regions and a set of metal pads surrounding that array. Each link-up region includes two sections, each having two nodes electrically connected to the terminals of a corresponding two-terminal test device. During PLY testing with a probe card, electrical connections between the test devices and the metal pads through the link-up regions allow each test device to be tested individually. Optionally, additional routing structures with the same footprint are formed down the line and stacked one above the other. These additional routing structures are used for PLY testing with the same probe card. Optionally, dummy pads are formed between stacked routing structures to improve robustness. Also disclosed is a semiconductor structure formed according to this method.
Abstract:
An integrated circuit (IC) structure is disclosed. The structure can include: a first heat dissipative element disposed between a pair of shallow trench isolations (STIs) in a substrate, and a first polysilicon resistor in a polysilicon layer positioned over the substrate and the pair of STIs, the first polysilicon resistor in thermal communication with the first heat dissipative element. The structure can also include a second polysilicon resistor in the polysilicon layer, the second polysilicon resistor laterally separated from the first polysilicon resistor, and the first heat dissipative element in thermal communication with the first polysilicon resistor and the second polysilicon element. The structure can also include a second heat dissipative element, the second heat dissipative element in a different directional orientation than the first heat dissipative element.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, an integrated circuit includes a semiconductor substrate doped with a first conductivity-determining impurity. The semiconductor substrate has formed therein a first well doped with a second conductivity-determining impurity that is different from the first conductivity-determining impurity, a second well, formed within the first well, and doped with the first conductivity-determining impurity, and a third well spaced apart from the first and second wells and doped with the second conductivity-determining impurity. The integrated circuit further includes a floating gate structure formed over the semiconductor substrate. The floating gate structure includes a first gate element disposed over the second well and being separated from the second well with a dielectric layer, a second gate element disposed over the third well and being separated from the third well with the dielectric layer, and a conductive connector.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, an integrated circuit includes a semiconductor substrate doped with a first conductivity-determining impurity. The semiconductor substrate has formed therein a first well doped with a second conductivity-determining impurity that is different from the first conductivity-determining impurity, a second well, formed within the first well, and doped with the first conductivity-determining impurity, and a third well spaced apart from the first and second wells and doped with the first conductivity-determining impurity. The integrated circuit further includes a floating gate structure formed over the semiconductor substrate. The floating gate structure includes a first gate element disposed over the second well and being separated from the second well with a dielectric layer, a second gate element disposed over the third well and being separated from the third well with the dielectric layer, and a conductive connector.