Abstract:
A system and method for detecting and mitigating automatic ignition in a cylinder of an internal combustion engine. The method includes providing a first sensor for sensing and determining a crank angle of a crankshaft of the engine. A second sensor is provided for detecting a change in an engine vibration frequency caused by Auto Ignition (AI). The engine vibration signal of the second sensor is processed into a knock intensity signal. The knock intensity signal is indicative of the cylinder pressure and is acquired when the crank angle is between a first predetermined crank angle and a second predetermined crank angle. At least one characteristic of the knock intensity signal is determined and the at least one characteristic of the knock intensity signal is compared to at least one predetermined characteristic threshold. If the at least one characteristic of the knock intensity signal is determined to exceed the at least one predetermined characteristic threshold, then at least one auto ignition mitigating action is performed to mitigate the auto ignition event.
Abstract:
A system and method for detecting and mitigating automatic ignition in a cylinder of an internal combustion engine. The method includes providing a first sensor for sensing and determining a crank angle of a crankshaft of the engine. A second sensor is provided for detecting a change in an engine vibration frequency caused by Auto Ignition (AI). The engine vibration signal of the second sensor is processed into a knock intensity signal. The knock intensity signal is indicative of the cylinder pressure and is acquired when the crank angle is between a first predetermined crank angle and a second predetermined crank angle. At least one characteristic of the knock intensity signal is determined and the at least one characteristic of the knock intensity signal is compared to at least one predetermined characteristic threshold. If the at least one characteristic of the knock intensity signal is determined to exceed the at least one predetermined characteristic threshold, then at least one auto ignition mitigating action is performed to mitigate the auto ignition event.
Abstract:
A system according to the principles of the present disclosure includes a vibration intensity module and a stochastic pre-ignition (SPI) detection module. The vibration intensity module determines a vibration intensity of an engine over a first engine cycle and a second engine cycle. The first engine cycle and the second engine cycle each correspond to a predetermined amount of crankshaft rotation. The SPI detection module selectively detects stochastic pre-ignition when the vibration intensity of the first engine cycle is less than a first threshold and the vibration intensity of the second engine cycle is greater than a second threshold.
Abstract:
A system according to the principles of the present disclosure includes a vibration intensity module and a stochastic pre-ignition (SPI) detection module. The vibration intensity module determines a vibration intensity of an engine over a first engine cycle and a second engine cycle. The first engine cycle and the second engine cycle each correspond to a predetermined amount of crankshaft rotation. The SPI detection module selectively detects stochastic pre-ignition when the vibration intensity of the first engine cycle is less than a first threshold and the vibration intensity of the second engine cycle is greater than a second threshold.
Abstract:
A method includes: generating an indicator of present operating conditions of an engine; determining a first amount of noise based on vibration measured during a first plurality of combustion events of a cylinder; storing the first amount of noise and a first value of the indicator in a mapping based on a first engine speed and a first engine load; determining the first value of the indicator from the mapping based on a second engine speed and a second engine load; generating a trigger signal when the first value is different than a second value of the indicator; and, when the trigger signal is generated: determining a second amount of noise based on vibration measured during a second plurality of combustion events of the cylinder; and replacing the first amount of noise and the first value in the mapping with the second amount of noise and the second value.
Abstract:
An engine control system for a vehicle includes a timer module, a stochastic pre-ignition (SPI) mitigation module, and a boost control module. The timer module tracks a period of operation of an engine where vacuum within an intake manifold is less than a first predetermined vacuum. The SPI mitigation module generates an SPI signal when the period is greater than a predetermined period and the vacuum is less than a second predetermined vacuum. The second predetermined vacuum is less than the first predetermined vacuum. The boost control module reduces output of a turbocharger in response to the generation of the SPI signal.
Abstract:
A method includes: generating an indicator of present operating conditions of an engine; determining a first amount of noise based on vibration measured during a first plurality of combustion events of a cylinder; storing the first amount of noise and a first value of the indicator in a mapping based on a first engine speed and a first engine load; determining the first value of the indicator from the mapping based on a second engine speed and a second engine load; generating a trigger signal when the first value is different than a second value of the indicator; and, when the trigger signal is generated: determining a second amount of noise based on vibration measured during a second plurality of combustion events of the cylinder; and replacing the first amount of noise and the first value in the mapping with the second amount of noise and the second value.
Abstract:
An engine control system for a vehicle includes a timer module, a stochastic pre-ignition (SPI) mitigation module, and a boost control module. The timer module tracks a period of operation of an engine where vacuum within an intake manifold is less than a first predetermined vacuum. The SPI mitigation module generates an SPI signal when the period is greater than a predetermined period and the vacuum is less than a second predetermined vacuum. The second predetermined vacuum is less than the first predetermined vacuum. The boost control module reduces output of a turbocharger in response to the generation of the SPI signal.