Abstract:
A monolithic rocker arm component includes a first lateral wall defining a first aperture and a first mass reducing feature, an opposing second wall defining a second aperture and a second mass reducing feature, a pushrod receiving member that bridges the first lateral wall and the second lateral wall at a first end of the rocker arm, and a tongue element that bridges the first lateral wall and the second lateral wall at a second end of the rocker arm. The pushrod receiving member routes oil from the first towards the second end. The monolithic rocker arm may have one or more internal regions having lattice structures. Methods for additive manufacturing the monolithic rocker component are also provided.
Abstract:
An engine control system for a vehicle includes a timer module, a stochastic pre-ignition (SPI) mitigation module, and a boost control module. The timer module tracks a period of operation of an engine where vacuum within an intake manifold is less than a first predetermined vacuum. The SPI mitigation module generates an SPI signal when the period is greater than a predetermined period and the vacuum is less than a second predetermined vacuum. The second predetermined vacuum is less than the first predetermined vacuum. The boost control module reduces output of a turbocharger in response to the generation of the SPI signal.
Abstract:
An assembly includes a cylinder head with an integrated exhaust manifold that has four exhaust flow passages directing cylinder exhaust from inlets arranged to correspond with exhaust from the four cylinders, respectively, and has only three outlets. The assembly includes a twin scroll turbocharger having a housing with a first scroll passage, a second scroll passage, and only three inlets. Two of the exhaust flow passages join in the cylinder head to direct exhaust flow into only one of the inlets of the housing and through the first scroll passage. Exhaust flow through the other two of the exhaust flow passages flows separately into the other two inlets in the housing and joins in the housing to flow through the second scroll passage.
Abstract:
A method includes: generating an indicator of present operating conditions of an engine; determining a first amount of noise based on vibration measured during a first plurality of combustion events of a cylinder; storing the first amount of noise and a first value of the indicator in a mapping based on a first engine speed and a first engine load; determining the first value of the indicator from the mapping based on a second engine speed and a second engine load; generating a trigger signal when the first value is different than a second value of the indicator; and, when the trigger signal is generated: determining a second amount of noise based on vibration measured during a second plurality of combustion events of the cylinder; and replacing the first amount of noise and the first value in the mapping with the second amount of noise and the second value.
Abstract:
An engine control system for a vehicle includes a timer module, a stochastic pre-ignition (SPI) mitigation module, and a boost control module. The timer module tracks a period of operation of an engine where vacuum within an intake manifold is less than a first predetermined vacuum. The SPI mitigation module generates an SPI signal when the period is greater than a predetermined period and the vacuum is less than a second predetermined vacuum. The second predetermined vacuum is less than the first predetermined vacuum. The boost control module reduces output of a turbocharger in response to the generation of the SPI signal.
Abstract:
A camshaft assembly includes a base shaft extending along a longitudinal axis. The base shaft is configured to rotate about the longitudinal axis. The camshaft assembly further includes a series of lobe packs mounted on the base shaft. The lobe pack includes a first cam lobe, a second cam lobe, and a third cam lobe. The lobe pack further includes a barrel cam defining a control groove. The camshaft assembly further includes an actuator including an actuator body and at least one pin movably coupled to the actuator body. The lobe pack is configured to move axially relative to the base shaft between a first position, a second position, and a third position. These three lobe pack positions are used to define three discrete valve lift profiles for the intake or exhaust valves in the cylinder. The lift profiles can be different for each engine valve.
Abstract:
A camshaft assembly includes a base shaft extending along a longitudinal axis. The base shaft is configured to rotate about the longitudinal axis. The camshaft assembly further includes a series of lobe packs mounted on the base shaft. The lobe pack includes a first cam lobe, a second cam lobe, and a third cam lobe. The lobe pack further includes a barrel cam defining a control groove. The camshaft assembly further includes an actuator including an actuator body and at least one pin movably coupled to the actuator body. The lobe pack is configured to move axially relative to the base shaft between a first position, a second position, and a third position. These three lobe pack positions are used to define three discrete valve lift profiles for the intake or exhaust valves in the cylinder. The lift profiles can be different for each engine valve.
Abstract:
A system according to the principles of the present disclosure includes a vibration intensity module and a stochastic pre-ignition (SPI) detection module. The vibration intensity module determines a vibration intensity of an engine over a first engine cycle and a second engine cycle. The first engine cycle and the second engine cycle each correspond to a predetermined amount of crankshaft rotation. The SPI detection module selectively detects stochastic pre-ignition when the vibration intensity of the first engine cycle is less than a first threshold and the vibration intensity of the second engine cycle is greater than a second threshold.
Abstract:
A system according to the principles of the present disclosure includes a vibration intensity module and a stochastic pre-ignition (SPI) detection module. The vibration intensity module determines a vibration intensity of an engine over a first engine cycle and a second engine cycle. The first engine cycle and the second engine cycle each correspond to a predetermined amount of crankshaft rotation. The SPI detection module selectively detects stochastic pre-ignition when the vibration intensity of the first engine cycle is less than a first threshold and the vibration intensity of the second engine cycle is greater than a second threshold.
Abstract:
A monolithic rocker arm component includes a first lateral wall defining a first aperture and a first mass reducing feature, an opposing second wall defining a second aperture and a second mass reducing feature, a pushrod receiving member that bridges the first lateral wall and the second lateral wall at a first end of the rocker arm, and a tongue element that bridges the first lateral wall and the second lateral wall at a second end of the rocker arm. The pushrod receiving member routes oil from the first towards the second end. The monolithic rocker arm may have one or more internal regions having lattice structures. Methods for additive manufacturing the monolithic rocker component are also provided.