Abstract:
A steering system for an automotive vehicle is disclosed. The steering system includes, in some embodiments, a steering shaft, a steering column jacket encircling at least a portion of the steering shaft, an emulator enclosed within a housing, the emulator coupled to the steering shaft, and a travel limiter assembly enclosed within the housing and coupled with the steering shaft, the travel limiter assembly comprising at least one rotational member having a pin and a groove configured to receive the pin, the groove including a stop portion. In some embodiments, the at least one rotational member and at least a portion of the steering shaft rotates within the housing and the pin travels within the groove until the pin encounters the stop portion after a predetermined degree of rotation of the steering shaft.
Abstract:
A steering assembly for a vehicle includes a steering gear including a steering gear housing enclosing a steering rack, the steering rack coupled to a tie rod at a joint, at least one boot assembly configured to enclose the joint between the steering rack and the tie rod. The at least one boot assembly includes a first boot proximate to the joint and a second boot disposed outward of the first boot. The first and second boots define a void therebetween.
Abstract:
A steering system for an autonomously driven vehicle and methods of steering the vehicle are disclosed. A brake device is operable in a first phase to brake the vehicle when a power steering controller is in a first mode and operable in a second phase to steer the vehicle when the power steering controller is in a second mode. A main controller is in communication with a friction device to signal the friction device to actuate to a disengaged position when the power steering controller is in the first mode and the brake device is in the first phase, and signal the friction device to actuate to an engaged position to secure a steering wheel in an initial position when the power steering controller is in the second mode and the brake device is in the second phase to allow the brake device to steer the vehicle.
Abstract:
Methods and apparatus are provided for damage risk indication of a steering system of a vehicle. The apparatus includes a sensor system and a processing device. The sensor system is configured to detect a velocity of a servo unit of a steering system of the vehicle. The processing device is configured to determine an acceleration value of the servo unit and to compare the acceleration value, velocity values and thresholds of the servo unit with an acceleration value threshold, and to generate a warning signal if the acceleration value of the servo unit exceeds the acceleration value threshold. Thus, a damage risk is determined and the vehicle can be subjected to further damage investigation.
Abstract:
A steering system for an automotive vehicle is disclosed. The steering system includes a steering column assembly, a steering wheel assembly secured to the steering column assembly, the steering wheel assembly comprising a steering wheel frame, a steering wheel rim, and a hub, and an emulator enclosed within a housing, the emulator secured to the steering column assembly. The steering wheel frame and the hub are stationary and the steering wheel rim rotates relative to the steering wheel frame and the hub.
Abstract:
A steering system for an automotive vehicle is disclosed. The steering system includes, in some embodiments, a steering shaft, a steering column jacket encircling at least a portion of the steering shaft, an emulator enclosed within a housing, the emulator coupled to the steering shaft, and a travel limiter assembly enclosed within the housing and coupled with the steering shaft, the travel limiter assembly comprising at least one rotational member having a pin and a groove configured to receive the pin, the groove including a stop portion. In some embodiments, the at least one rotational member and at least a portion of the steering shaft rotates within the housing and the pin travels within the groove until the pin encounters the stop portion after a predetermined degree of rotation of the steering shaft.
Abstract:
Methods and apparatus are provided for damage risk indication of a steering system of a vehicle. The apparatus includes a sensor system and a processing device. The sensor system is configured to detect a velocity of a servo unit of a steering system of the vehicle. The processing device is configured to determine an acceleration value of the servo unit and to compare the acceleration value, velocity values and thresholds of the servo unit with an acceleration value threshold, and to generate a warning signal if the acceleration value of the servo unit exceeds the acceleration value threshold. Thus, a damage risk is determined and the vehicle can be subjected to further damage investigation.
Abstract:
In one embodiment, a method for steering system integrity testing includes positioning the vehicle with the second traction wheel within a first constraint; applying mechanical load to the first traction wheel; receiving data corresponding to a steering system operating condition; positioning the vehicle with the first traction wheel within a second constraint; applying mechanical load to the second traction wheel; receiving data corresponding to a steering system operating condition; positioning the vehicle with the first and second traction wheels on respective first and second friction surfaces; applying mechanical load to the first and second traction wheels; receiving data corresponding to a steering system operating condition; transmitting the data to a processor; and determining, via the processor, a health status of the steering system based on the data.
Abstract:
Methods and apparatus are provided for controlling a steering assist unit of a vehicle. The method includes receiving sensor data indicating a wheel position of a wheel relative to a frame of the vehicle, and determining a travel limit value for the steering assist unit based at least on the wheel position of the wheel. The method further includes outputting a control signal to control the travel of the steering assist unit based on the travel limit value.
Abstract:
A steering system for an autonomously driven vehicle and methods of steering the vehicle are disclosed. A main controller signals a secondary steering assembly to operate in a first phase when a power steering controller is in a first mode and a second phase to steer the vehicle when the power steering controller is in a second mode. The main controller signals a friction device to actuate to a disengaged position when the power steering controller is in the first mode and the secondary steering assembly is in the first phase, and to signal the friction device to actuate to an engaged position to secure a steering wheel in an initial position when the power steering controller is in the second mode and the secondary steering assembly is in the second phase to allow the secondary steering assembly to steer the vehicle.