Abstract:
A method for detecting a failure mode in an electronic selector having a button coupled to a first switch, a second switch, and a third switch, the method includes incrementing a button activation counter once for each button activation event and incrementing a first switch-closed counter, a second switch-closed counter, and a third switch-closed counter once for each button activation event if the respective switch is closed at any time during the button activation event. The method further includes incrementing a first switch-opened counter, a second switch-opened counter, and a third switch-opened counter once for each button activation event. The method further includes evaluating a fault status of the first switch, the second switch, or the third switch when the button activation counter reaches or exceeds a predetermined threshold; and reporting the fault status of the first switch, the second switch or the third switch.
Abstract:
A hydraulic control system for a transmission includes a source of pressurized hydraulic fluid, a park servo connected to a park mechanism, the park servo having a park side, an out-of-park side, and a biasing member disposed on the park side. A first valve assembly includes a first inlet port in fluid communication with the source of pressurized hydraulic fluid, a first outlet port, and a first valve for selectively allowing fluid communication between the first inlet port and the first outlet port. A second valve assembly includes a second inlet port in direct fluid communication downstream of the first valve assembly, a second outlet port in direct fluid communication with the out-of-park side of the park servo, and a second valve moveable between an out-of-park position and a park position.
Abstract:
A hydraulic control system for a transmission is provided. The hydraulic control system includes a source of pressurized hydraulic fluid that communicates with an electronic transmission range selection (ETRS) subsystem. In one example, the ETRS subsystem includes an ETRS enablement valve, an ETRS control valve, a park servo that controls a park mechanism, a plurality of solenoids, and a park inhibit solenoid assembly.
Abstract:
A hydraulic control system for a transmission is provided. The hydraulic control system includes a source of pressurized hydraulic fluid that communicates with an electronic transmission range selection (ETRS) subsystem. In one example, the ETRS subsystem includes an ETRS enablement valve, an ETRS control valve, a park servo that controls a park mechanism, a plurality of solenoids, and a park inhibit solenoid assembly.
Abstract:
A method for detecting a failure mode in an electronic selector having a button coupled to a first switch, a second switch, and a third switch, the method includes incrementing a button activation counter once for each button activation event and incrementing a first switch-closed counter, a second switch-closed counter, and a third switch-closed counter once for each button activation event if the respective switch is closed at any time during the button activation event. The method further includes incrementing a first switch-opened counter, a second switch-opened counter, and a third switch-opened counter once for each button activation event. The method further includes evaluating a fault status of the first switch, the second switch, or the third switch when the button activation counter reaches or exceeds a predetermined threshold; and reporting the fault status of the first switch, the second switch or the third switch.
Abstract:
A hydraulic control system for a transmission includes a source of pressurized hydraulic fluid, a park servo connected to a park mechanism, the park servo having a park side, an out-of-park side, and a biasing member disposed on the park side. A first valve assembly includes a first inlet port in fluid communication with the source of pressurized hydraulic fluid, a first outlet port, and a first valve for selectively allowing fluid communication between the first inlet port and the first outlet port. A second valve assembly includes a second inlet port in direct fluid communication downstream of the first valve assembly, a second outlet port in direct fluid communication with the out-of-park side of the park servo, and a second valve moveable between an out-of-park position and a park position.