Abstract:
A monolithic rocker arm component includes a first lateral wall defining a first aperture and a first mass reducing feature, an opposing second wall defining a second aperture and a second mass reducing feature, a pushrod receiving member that bridges the first lateral wall and the second lateral wall at a first end of the rocker arm, and a tongue element that bridges the first lateral wall and the second lateral wall at a second end of the rocker arm. The pushrod receiving member routes oil from the first towards the second end. The monolithic rocker arm may have one or more internal regions having lattice structures. Methods for additive manufacturing the monolithic rocker component are also provided.
Abstract:
A packaged vacuum pump and oil pump for use in a vehicle generally includes an oil pump module and a vacuum pump module. The oil pump module is configured to circulate oil, and is fitted to a first drive shaft configured to transmit torque to the oil pump module. The vacuum pump module is configured to generate a vacuum, and is fitted to a second drive shaft configured to transmit torque to the vacuum pump module. The packaged vacuum pump and oil pump also includes a clutch. The clutch connects the first drive shaft and the second drive shaft, and is configured to transfer torque from the first drive shaft to the second drive shaft when the clutch is engaged. The clutch may be a hydraulic clutch configured to receive a pressurized fluid, which may be oil received from the oil pump module, to engage the clutch.
Abstract:
A vertically disposed oil pan baffle includes a body having first and second opposing side walls joined by a third wall, and an opposing fourth wall. Each of the first and second side walls is configured to conform with first and second internal surfaces of an oil pan. A metering opening is formed in one of the third and fourth walls. The metering opening is configured and disposed to control a rate of flow of oil through the vertically disposed oil pan baffle.
Abstract:
An engine includes an engine block that defines a drain-back passage and a Positive Crankcase Ventilation (PCV) passage. The drain-back passage and the PCV passage are disposed in fluid communication with each other. A cylinder head is attached to the engine block. The cylinder head defines an oil return passage. The oil return passage is disposed in fluid communication with both the drain-back passage and the PCV passage. A head gasket is disposed between the engine block and the cylinder head, and includes a shelf that extends at least partially over the PCV passage to prevent liquids draining through the oil return passage into the drain-back passage, from entering the PCV passage, while allowing gasses flowing through the oil return passage to enter the PCV passage.
Abstract:
A monolithic rocker arm component includes a first lateral wall defining a first aperture and a first mass reducing feature, an opposing second wall defining a second aperture and a second mass reducing feature, a pushrod receiving member that bridges the first lateral wall and the second lateral wall at a first end of the rocker arm, and a tongue element that bridges the first lateral wall and the second lateral wall at a second end of the rocker arm. The pushrod receiving member routes oil from the first towards the second end. The monolithic rocker arm may have one or more internal regions having lattice structures. Methods for additive manufacturing the monolithic rocker component are also provided.
Abstract:
A universal oil pan die tooling is provided for forming alternative oil pans for alternative internal combustion engines with and without an oil cooler circuit. The die tooling includes a first die member defining a cavity and a second die member having a protruding portion designed to be inserted in the cavity of the first die member to define a mold cavity therebetween that defines a shape of the oil pan. A first die insert is used along with the first die member and the second die member to form oil pans for use with an engine having an oil cooler. An alternative second die insert is used in place of the first die insert along with the first die member and the second die member to form oil pans for use with an engine without an oil cooler.
Abstract:
An engine includes an engine block that defines a drain-back passage and a Positive Crankcase Ventilation (PCV) passage. The drain-back passage and the PCV passage are disposed in fluid communication with each other. A cylinder head is attached to the engine block. The cylinder head defines an oil return passage. The oil return passage is disposed in fluid communication with both the drain-back passage and the PCV passage. A head gasket is disposed between the engine block and the cylinder head, and includes a shelf that extends at least partially over the PCV passage to prevent liquids draining through the oil return passage into the drain-back passage, from entering the PCV passage, while allowing gasses flowing through the oil return passage to enter the PCV passage.