MULTI-AXIS PIVOTING COUPLER JOINTS AND DRIVETRAIN ARCHITECTURES FOR INTELLIGENT ELECTRIC SCOOTERS

    公开(公告)号:US20200094904A1

    公开(公告)日:2020-03-26

    申请号:US16142428

    申请日:2018-09-26

    Abstract: Presented are multi-axis pivoting coupler joints for motorized vehicles, methods for making/using such coupler joints, and electric scooters with multi-axis pivoting coupler joints enabling multimodal scooter operation. A pivoting coupler joint includes first and second bearing assemblies each with a respective housing, respective inner and outer races concentric with each other and located in their respective housing, and a respective set of rolling elements rollably interposed between their respective inner and outer races. The first inner race of the first bearing assembly receives therethrough and circumscribes an axle shaft of a vehicle wheel. The second inner race attaches to a wheeled rider deck of the vehicle. The first and second bearing housings are joined together and angularly offset from each other. For some applications, the first bearing assembly includes a pair of longitudinally spaced needle roller bearings, and the second bearing assembly includes a pair of longitudinally spaced tapered bearings.

    Powertrain architectures and control algorithms for intelligent electric scooters

    公开(公告)号:US11001152B2

    公开(公告)日:2021-05-11

    申请号:US16142415

    申请日:2018-09-26

    Abstract: Presented are adaptive propulsion assist systems and control logic for manually-powered vehicles, methods for making/using such systems, and intelligent electric scooters with distributed sensing and control-loop feedback for adaptive e-assist operations. A method for regulating a propulsion assist system of a manually-powered vehicle includes a vehicle controller detecting a user contacting the vehicle's handlebar, responsively receiving sensor signals indicative of a user-applied force to the handlebar, and then determining a net user-applied force based on the handlebar force and user-generated forces applied to the scooter deck. The vehicle controller also receives sensor signals indicative of the vehicle's current acceleration, and determines therefrom a pitch angle of the surface on which the vehicle moves. Responsive to the net force being greater than zero and the pitch angle being greater than a calibrated threshold angle, the controller commands the traction motor to increase motor torque output by a calibrated force gain increment.

    POWERTRAIN ARCHITECTURES AND CONTROL ALGORITHMS FOR INTELLIGENT ELECTRIC SCOOTERS

    公开(公告)号:US20200094693A1

    公开(公告)日:2020-03-26

    申请号:US16142415

    申请日:2018-09-26

    Abstract: Presented are adaptive propulsion assist systems and control logic for manually-powered vehicles, methods for making/using such systems, and intelligent electric scooters with distributed sensing and control-loop feedback for adaptive e-assist operations. A method for regulating a propulsion assist system of a manually-powered vehicle includes a vehicle controller detecting a user contacting the vehicle's handlebar, responsively receiving sensor signals indicative of a user-applied force to the handlebar, and then determining a net user-applied force based on the handlebar force and user-generated forces applied to the scooter deck. The vehicle controller also receives sensor signals indicative of the vehicle's current acceleration, and determines therefrom a pitch angle of the surface on which the vehicle moves. Responsive to the net force being greater than zero and the pitch angle being greater than a calibrated threshold angle, the controller commands the traction motor to increase motor torque output by a calibrated force gain increment.

Patent Agency Ranking