DISTRIBUTED BEAMFORMING BASED ON MESSAGE PASSING
    1.
    发明申请
    DISTRIBUTED BEAMFORMING BASED ON MESSAGE PASSING 有权
    基于消息传递的分布式光束

    公开(公告)号:US20150200454A1

    公开(公告)日:2015-07-16

    申请号:US13867814

    申请日:2013-04-22

    Applicant: Google Inc.

    CPC classification number: H04R3/005 G10L21/0364 G10L2021/02166 H04R2420/07

    Abstract: Methods and systems are provided for implementing a distributed algorithm for beam-forming (e.g., MVDR beam-forming) using a message-passing algorithm. The message-passing algorithm provides for computations to be performed in a distributed manner across a network, rather than in a centralized processing center or “fusion center”. The message-passing algorithm may also function for any network topology, and may continue operations when various changes are made in the network (e.g., nodes appearing, nodes disappearing, etc.). Additionally, the message-passing algorithm may minimize the transmission power per iteration and, depending on the particular network, also may minimize the transmission power required for communication between network nodes.

    Abstract translation: 提供了使用消息传递算法实现用于波束形成(例如,MVDR波束形成)的分布式算法的方法和系统。 消息传递算法提供了以分布式方式跨网络而不是集中处理中心或“融合中心”执行的计算。 消息传递算法还可以用于任何网络拓扑,并且可以在网络中进行各种改变时(例如,出现节点,节点消失等)来继续操作。 此外,消息传递算法可以使每次迭代的传输功率最小化,并且根据特定网络还可以最小化网络节点之间的通信所需的传输功率。

    QUANTIZATION WITH DISTINCT WEIGHTING OF COHERENT AND INCOHERENT QUANTIZATION ERROR
    2.
    发明申请
    QUANTIZATION WITH DISTINCT WEIGHTING OF COHERENT AND INCOHERENT QUANTIZATION ERROR 有权
    具有相干和无量纲误差的不相称权重的定量

    公开(公告)号:US20150199970A1

    公开(公告)日:2015-07-16

    申请号:US13856233

    申请日:2013-04-03

    Applicant: GOOGLE INC.

    Abstract: Methods and systems are provided for separating signal-correlated and signal-uncorrelated error components in quantization noise. Such separation leads to a generalization of the conventional rate-distortion optimization problem. For the commonly used assumption of a Gaussian process, a quantizer according to this principle is implemented in a straightforward manner using a dithered quantizer and appropriate pre-filters and post-filters. If the penalization of the signal-uncorrelated error component is increased over that of the signal-correlated error component, then the pre-filter emphasizes the signal spectrum more, reducing the differential entropy rate of the pre-filtered signal. Accordingly, the signal-uncorrelated noise is reduced for a given rate.

    Abstract translation: 提供了用于在量化噪声中分离信号相关和信号不相关误差分量的方法和系统。 这种分离导致常规速率失真优化问题的泛化。 对于高斯过程的常用假设,根据该原理的量化器使用抖动量化器和适当的预滤波器和后置滤波器以直接的方式实现。 如果信号不相关误差分量的惩罚比信号相关误差分量的惩罚增加,则预滤波器更强调信号频谱,减少预滤波信号的微分熵速率。 因此,给定的速率降低了信号不相关的噪声。

    MUTUAL INFORMATION BASED INTELLIGIBILITY ENHANCEMENT
    3.
    发明申请
    MUTUAL INFORMATION BASED INTELLIGIBILITY ENHANCEMENT 有权
    基于相互信息的智能增强

    公开(公告)号:US20150295662A1

    公开(公告)日:2015-10-15

    申请号:US14249870

    申请日:2014-04-10

    Applicant: GOOGLE INC.

    CPC classification number: H04B15/00 G10L21/0364

    Abstract: Provided are methods and systems for improving the intelligibility of speech in a noisy environment. A communication model is developed that includes noise inherent in the message production and message interpretation processes, and considers that these noises have fixed signal-to-noise ratios. The communication model forms the basis of an algorithm designed to optimize the intelligibility of speech in a noisy environment. The intelligibility optimization algorithm only does something (e.g., manipulates the audio signal) when needed, and thus if no noise is present the algorithm does not alter or otherwise interfere with the audio signals, thereby preventing any speech distortion. The algorithm is also very fast and efficient in comparison to most existing approaches for speech intelligibility enhancement, and therefore the algorithm lends itself to easy implementation in an appropriate device (e.g., cellular phone or smartphone).

    Abstract translation: 提供了在嘈杂环境中提高语音清晰度的方法和系统。 开发了包括消息生成和消息解释过程中固有的噪声的通信模型,并认为这些噪声具有固定的信噪比。 通信模型构成了一种旨在优化语音在嘈杂环境中的可懂度的算法的基础。 可理解性优化算法在需要时仅执行某些操作(例如,操纵音频信号),因此如果不存在噪声,算法不会改变或以其他方式干扰音频信号,从而防止任何语音失真。 与用于语音可懂度增强的大多数现有方法相比,该算法也非常快速和有效,因此该算法本身在适当的设备(例如,蜂窝电话或智能电话)中容易实现。

    ENHANCEMENT OF INTELLIGIBILITY IN NOISY ENVIRONMENT
    5.
    发明申请
    ENHANCEMENT OF INTELLIGIBILITY IN NOISY ENVIRONMENT 有权
    提高噪声环境中的智能化

    公开(公告)号:US20150055800A1

    公开(公告)日:2015-02-26

    申请号:US14466565

    申请日:2014-08-22

    Applicant: GOOGLE INC.

    Abstract: Provided are methods and systems for enhancing the intelligibility of an audio (e.g., speech) signal rendered in a noisy environment, subject to a constraint on the power of the rendered signal. A quantitative measure of intelligibility is the mean probability of decoding of the message correctly. The methods and systems simplify the procedure by approximating the maximization of the decoding probability with the maximization of the similarity of the spectral dynamics of the noisy speech to the spectral dynamics of the corresponding noise-free speech. The intelligibility enhancement procedures provided are based on this principle, and all have low computational cost and require little delay, thus facilitating real-time implementation.

    Abstract translation: 提供了用于增强在嘈杂环境中呈现的音频(例如,语音)信号的可懂度的方法和系统,受到对所渲染信号的功率的约束。 可信度的定量测量是正确解码消息的平均概率。 方法和系统通过近似解码概率的最大化来简化该过程,其中噪声语音的频谱动力学的相似性与相应无噪声语音的频谱动力学的最大化相关。 所提供的可懂度增强程序是基于这一原则,并且都具有较低的计算成本,并且需要很少的延迟,从而便于实时实现。

    HIERARCHICAL DECCORELATION OF MULTICHANNEL AUDIO
    6.
    发明申请
    HIERARCHICAL DECCORELATION OF MULTICHANNEL AUDIO 有权
    多通道音频的分层分解

    公开(公告)号:US20140112481A1

    公开(公告)日:2014-04-24

    申请号:US13655225

    申请日:2012-10-18

    Applicant: Google Inc.

    Abstract: Provided are methods, systems, and apparatus for hierarchical decorrelation of multichannel audio. A hierarchical decorrelation algorithm is designed to adapt to possibly changing characteristics of an input signal, and also preserves the energy of the original signal. The algorithm is invertible in that the original signal can be retrieved if needed. Furthermore, the proposed algorithm decomposes the decorrelation process into multiple low-complexity steps. The contribution of these steps is generally in a decreasing order, and thus the complexity of the algorithm can be scaled.

    Abstract translation: 提供了用于多声道音频的分层去相关的方法,系统和装置。 分层去相关算法被设计为适应输入信号的可能变化的特性,并且还保留原始信号的能量。 该算法是可逆的,因为如果需要,可以检索原始信号。 此外,所提出的算法将解相关过程分解为多个低复杂度步骤。 这些步骤的贡献通常是递减的,从而可以缩放算法的复杂性。

    SINUSOIDAL INTERPOLATION ACROSS MISSING DATA

    公开(公告)号:US20150248893A1

    公开(公告)日:2015-09-03

    申请号:US14194192

    申请日:2014-02-28

    Applicant: Google Inc.

    Abstract: Provided are methods and systems for concealing missing segments and/or discontinuities in an audio signal, thereby restoring the continuity of the signal. The methods and systems are designed for and targeted at audio signals, are based on interpolation and extrapolation operations for sinusoids, and do not rely on the assumption that the sinusoids are harmonic. The methods and systems are improvements over existing audio concealment approaches in that, among other advantages, the methods and systems facilitate asynchronous interpolation, use an interpolation procedure that corresponds to time-domain waveform interpolation if the signal is harmonic, and have a peak selection procedure that is effective for audio signals.

    Abstract translation: 提供了用于隐藏音频信号中的丢失段和/或不连续性的方法和系统,从而恢复信号的连续性。 该方法和系统设计用于和针对音频信号,基于正弦曲线的插值和外插操作,并且不依赖于正弦曲线是谐波的假设。 方法和系统是对现有音频隐藏方法的改进,其中除了其他优点之外,方法和系统还促进异步插值,如果信号是谐波,则使用对应于时域波形插值的内插过程,并且具有峰值选择程序 这对音频信号有效。

    MICROPHONE AUTOLOCALIZATION USING MOVING ACOUSTIC SOURCE
    8.
    发明申请
    MICROPHONE AUTOLOCALIZATION USING MOVING ACOUSTIC SOURCE 有权
    使用移动声源的麦克风自动化

    公开(公告)号:US20150185312A1

    公开(公告)日:2015-07-02

    申请号:US14145196

    申请日:2013-12-31

    Applicant: GOOGLE INC.

    CPC classification number: G01S5/18 G01S5/30

    Abstract: Provided are methods and systems for calibrating a distributed sensor (e.g., microphone) array using time-of-flight (TOF) measurements for a plurality of spatially distributed acoustic events at the sensors. The calibration includes localization and gain equalization of the sensors. Accurate measurements of TOFs are obtained from spatially distributed acoustic events using a controlled signal emitted at known intervals by a moving acoustic source. A portable user device capable of playing out audio is used to produce a plurality of acoustic events (e.g., sound clicks) at known intervals of time and at different, but arbitrary locations based on the device being moved around in space by a user while producing the acoustic events. As such, the times of the acoustic event generation are known, and are spatially diverse. The calibration signals emitted by the acoustic source are designed to provide robustness to noise and reverberation.

    Abstract translation: 提供了使用在传感器处的多个空间分布的声学事件的飞行时间(TOF)测量来校准分布式传感器(例如,麦克风)阵列的方法和系统。 校准包括传感器的定位和增益均衡。 使用由移动声源以已知间隔发射的受控信号从空间分布的声学事件获得TOF的精确测量。 使用能够播放音频的便携式用户装置在已知的时间间隔和在不同的但任意的位置上产生多个声音事件(例如,声音点击),这是基于用户在空间中移动的装置,同时产生 声学事件。 因此,声学事件发生的时代是已知的,并且在空间上是多样的。 由声源发出的校准信号被设计成提供对噪声和混响的鲁棒性。

    HIERARCHICAL DECORRELATION OF MULTICHANNEL AUDIO
    9.
    发明申请
    HIERARCHICAL DECORRELATION OF MULTICHANNEL AUDIO 审中-公开
    多通道音频的分层装饰

    公开(公告)号:US20160293176A1

    公开(公告)日:2016-10-06

    申请号:US15182751

    申请日:2016-06-15

    Applicant: GOOGLE INC.

    Abstract: Provided are methods, systems, and apparatus for hierarchical decorrelation of multichannel audio. A hierarchical decorrelation algorithm is designed to adapt to possibly changing characteristics of an input signal, and also preserves the energy of the original signal. The algorithm is invertible in that the original signal can be retrieved if needed. Furthermore, the proposed algorithm decomposes the decorrelation process into multiple low-complexity steps. The contribution of these steps is generally in a decreasing order, and thus the complexity of the algorithm can be scaled.

    Abstract translation: 提供了用于多声道音频的分层去相关的方法,系统和装置。 分层去相关算法被设计为适应输入信号的可能变化的特性,并且还保留原始信号的能量。 该算法是可逆的,因为如果需要,可以检索原始信号。 此外,所提出的算法将解相关过程分解为多个低复杂度步骤。 这些步骤的贡献通常是递减的,从而可以缩放算法的复杂性。

    ADAPTIVE, SCALABLE PACKET LOSS RECOVERY
    10.
    发明申请
    ADAPTIVE, SCALABLE PACKET LOSS RECOVERY 有权
    自适应,可分级包丢失恢复

    公开(公告)号:US20140026020A1

    公开(公告)日:2014-01-23

    申请号:US14036959

    申请日:2013-09-25

    Applicant: GOOGLE INC.

    Abstract: A system for transmitting data packets representing a source signal across a packet data network is provided. Additionally provided are methods and an apparatus for encoding parameters representing the source signal and also decoding these parameters. The system allows adaptation to the loss scenario of data packets transmitted across the packet data network. A redundancy encoding is generated with a bit rate continuously scalable, the bit rate being provided by a bit rate controller that uses input from the network and packet-loss rate information. The specification can be changed for each coding block. At the decoder, recovery is performed by a parameter estimator based on a dynamically generated statistical model of the effect of the quantizers. The method may be added to existing lossy source coding systems or may be used to enhance the quality of the reconstructed source signal even in scenarios without packet loss.

    Abstract translation: 提供了一种用于在分组数据网络上传送表示源信号的数据分组的系统。 另外提供了用于编码表示源信号的参数的方法和装置,并且还对这些参数进行解码。 该系统允许适应在分组数据网络上传输的数据分组的丢失情况。 以比特率连续可缩放的方式生成冗余编码,比特率由使用来自网络的输入的比特率控制器和分组丢失率信息提供。 可以为每个编码块更改规范。 在解码器中,基于动态生成的量化器效应的统计模型,由参数估计器进行恢复。 该方法可以添加到现有的有损耗源编码系统中,或者即使在没有分组丢失的情况下也可以用于增强重构源信号的质量。

Patent Agency Ranking