Abstract:
A method of controlling a flying object 1 including a generator 5, which includes solar cells, and an energy storage apparatus 7 is configured such in a case where, during flying of the flying object 1, a voltage of an energy storage device 6 in the energy storage apparatus 7 reaches a lower limit voltage of a voltage range in which charge and discharge of electricity can be reversibly repeated, the flying object 1 is made to keep flying and/or descend while making the energy storage device 6 discharge electricity within a voltage range lower than the lower limit voltage.
Abstract:
A positive active material for a lithium secondary battery contains a lithium-transition metal composite oxide represented by a composition formula of Li1+αMe1−αO2 (Me is a transition metal element including Co, Ni, and Mn; 1.2
Abstract:
Provided is a positive active material for a lithium secondary battery includes a lithium transition metal composite oxide having an α-NaFeO2-type crystal structure and represented by the composition formula of Li1+αMe1-αO2 (Me is a transition metal including Co, Ni and Mn and α>0). The positive active material contains Na in an amount of 900 ppm or more and 16000 ppm or less, or K in an amount of 1200 ppm or more and 18000 ppm or less.
Abstract:
A positive active material for a lithium secondary battery containing a lithium transition metal composite oxide having a hexagonal crystal structure in which the transition metal (Me) includes Ni, Co and Mn, wherein in the lithium transition metal composite oxide, a molar ratio of Ni to the transition metal (Me) (Ni/Me) is 0.5 or more and 0.9 or less, a molar ratio of Co to the transition metal (Me) (Co/Me) is 0.1 or more and 0.3 or less, a molar ratio of Mn to the transition metal (Me) (Mn/Me) is 0.03 or more and 0.3 or less, and a value obtained by dividing a half width ratio F(003)/F(104) at a potential of 4.3 V (vs. Li/Li+) by a half width ratio F(003)/F(104) at a potential of 2.0 V (vs. Li/Li+) is 0.9 or more and 1.1 or less.
Abstract:
Provided is a positive active material for a lithium secondary battery includes a lithium transition metal composite oxide having an α-NaFeO2-type crystal structure and represented by the composition formula of Li1+αMe1−αO2 (Me is a transition metal including Co, Ni and Mn and α>0). The positive active material contains Na in an amount of 900 ppm or more and 16000 ppm or less, or K in an amount of 1200 ppm or more and 18000 ppm or less.
Abstract:
The positive active material for a lithium secondary battery includes a lithium transition metal composite oxide having an α-NaFeO2-type crystal structure and represented by the composition formula of Li1+αMe1−αO2 (Me is a transition metal including Co, Ni and Mn and α>0). The positive active material contains Na in an amount of no less than 1900 ppm and no more than 8000 ppm, and has a 50% particle size (D50) of 5 μm or less in particle size distribution measurement.
Abstract:
To provide a hydroxide precursor having a high density, a method for producing a lithium transition metal composite oxide using the precursor, a positive active material having a large discharge capacity per unit volume, which uses the composite oxide, an electrode for nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery. A method for producing a transition metal hydroxide precursor for use in production of a lithium transition metal composite oxide, including adding a solution containing a transition metal (Me) into a reaction tank in which a water solvent of dissolution of a complexing agent and a reducing agent has been charged in advance to coprecipitate a transition metal hydroxide that includes Mn and Ni, or Mn, Ni and Co, and has a mole ratio Mn/Me of larger than 0.5 and a mole ratio Co/Me of 0.15 or less. Further, a lithium transition metal composite oxide having an α-NaFeO2-type crystal structure, in which a mole ratio Li/Me is larger than 1, the mole ratios of Mn and Co are as described above, and which has an X-ray diffraction pattern attributable to R3-m, a ratio (FWHM (003)/FWHM (114)) of a full width at half maximum of a diffraction peak of a (003) plane to a full width at half maximum of a diffraction peak of a (104) plane of 0.72 or less, and a peak differential pore volume of 0.50 mm3/(g·nm) or less as determined by a BJH method from an adsorption isotherm using a nitrogen gas adsorption method.
Abstract:
Disclosed is a positive active material for a nonaqueous electrolyte secondary battery containing a lithium transition metal composite oxide, in which the lithium transition metal composite oxide has an α-NaFeO2 structure, a molar ratio Li/Me of Li and a transition metal (Me) is 1
Abstract:
Provided is a positive active material for a lithium secondary battery includes a lithium transition metal composite oxide having an α-NaFeO2-type crystal structure and represented by the composition formula of Li1+αMe1−αO2 (Me is a transition metal including Co, Ni and Mn and α>0). The positive active material contains Na in an amount of 900 ppm or more and 16000 ppm or less, or K in an amount of 1200 ppm or more and 18000 ppm or less.
Abstract:
Disclosed is a positive active material for a nonaqueous electrolyte secondary battery containing a lithium transition metal composite oxide, in which the lithium transition metal composite oxide has an α-NaFeO2 structure, a molar ratio Li/Me of Li and a transition metal (Me) of 1.05≤Li/Me≤1.4, and a porosity of 5 to 15%.