摘要:
A closed loop expansion system for energy recovery includes a heat exchanger for using heat from a heat source to heat a working fluid of the closed loop expansion system to a temperature below the vaporization point of the working fluid; a radial inflow expander for receiving the working fluid from the heat exchanger and for expanding and partially vaporizing the working fluid; a screw expander for receiving the working fluid from the radial inflow turbine and for further expanding and vaporizing the working fluid; and a condenser for receiving the working fluid from the screw expander and for liquefying the working fluid.
摘要:
The rankine cycle system includes an evaporator coupled to a heat source and configured to circulate a working fluid in heat exchange relationship with a hot fluid from the heat source so as to heat the working fluid and vaporize the working fluid. An expander is coupled to the evaporator and configured to expand the vaporized working fluid from the evaporator. The exemplary expander is operable at variable speed. A condenser is coupled to the expander and configured to condense the vaporized working fluid from the expander. A pump is coupled to the condenser and configured to feed the condensed working fluid from the condenser to the evaporator.
摘要:
A closed loop expansion system for energy recovery includes a heat exchanger for using heat from a heat source to heat a working fluid of the closed loop expansion system to a temperature below the vaporization point of the working fluid; a radial inflow expander for receiving the working fluid from the heat exchanger and for expanding and partially vaporizing the working fluid; a screw expander for receiving the working fluid from the radial inflow turbine and for further expanding and vaporizing the working fluid; and a condenser for receiving the working fluid from the screw expander and for liquefying the working fluid.
摘要:
A waste heat recovery system includes at least two integrated rankine cycle systems coupled to at least two separate heat sources having different temperatures. The first rankine cycle system is coupled to a first heat source and configured to circulate a first working fluid. The second rankine cycle system is coupled to at least one second heat source and configured to circulate a second working fluid. The first and second working fluid are circulatable in heat exchange relationship through a cascading heat exchange unit for condensation of the first working fluid in the first rankine cycle system and evaporation of the second working fluid in the second rankine cycle system. At least one bypass unit is configured to divert at least a portion of the first working fluid to bypass the first evaporator, the first expander, the cascaded heat exchange unit, or combinations thereof; at least a portion of the second working fluid to bypass the second expander, the cascaded heat exchange unit, or combinations thereof.
摘要:
A Rankine cycle system includes: an evaporator configured to receive heat from a heat source and circulate a working fluid to remove heat from the heat source; an expander in flow communication with the evaporator and configured to expand the working fluid fed from the evaporator; a condenser in flow communication with the expander and configured to condense the working fluid fed from the expander; a pump in flow communication with the condenser and configured to pump the working fluid fed from the condenser; a first conduit for feeding a first portion of the working fluid from the pump to the evaporator; and a second conduit for feeding a second portion of the working fluid from the pump to the expander.
摘要:
A Rankine cycle system includes: an evaporator configured to receive heat from a heat source and circulate a working fluid to remove heat from the heat source; an expander in flow communication with the evaporator and configured to expand the working fluid fed from the evaporator; a condenser in flow communication with the expander and configured to condense the working fluid fed from the expander; a pump in flow communication with the condenser and configured to pump the working fluid fed from the condenser; a first conduit for feeding a first portion of the working fluid from the pump to the evaporator; and a second conduit for feeding a second portion of the working fluid from the pump to the expander.
摘要:
A pressure sensor measures an organic Rankine cycle (ORC) working fluid pressure in front of a radial inflow turbine, while a temperature sensor measures an ORC working fluid temperature in front of the radial inflow turbine. A controller responsive to algorithmic software determines a superheated temperature of the working fluid in front of the radial inflow turbine based on the measured working fluid pressure and the measured working fluid temperature. The controller then manipulates the speed of a working fluid pump, the pitch of turbine variable inlet guide vanes when present, and combinations thereof, in response to the determined superheated temperature to maintain the superheated temperature of the ORC working fluid in front of the radial inflow turbine close to a predefined set point. The superheated temperature can thus be maintained in the absence of sensors other than pressure and temperature sensors.
摘要:
A pressure sensor measures an organic Rankine cycle (ORC) working fluid pressure in front of a radial inflow turbine, while a temperature sensor measures an ORC working fluid temperature in front of the radial inflow turbine. A controller responsive to algorithmic software determines a superheated temperature of the working fluid in front of the radial inflow turbine based on the measured working fluid pressure and the measured working fluid temperature. The controller then manipulates the speed of a working fluid pump, the pitch of turbine variable inlet guide vanes when present, and combinations thereof, in response to the determined superheated temperature to maintain the superheated temperature of the ORC working fluid in front of the radial inflow turbine close to a predefined set point. The superheated temperature can thus be maintained in the absence of sensors other than pressure and temperature sensors.
摘要:
A waste heat recovery system includes at least two integrated rankine cycle systems coupled to at least two separate heat sources having different temperatures. The first rankine cycle system is coupled to a first heat source and configured to circulate a first working fluid. The second rankine cycle system is coupled to at least one second heat source and configured to circulate a second working fluid. The first and second working fluid are circulatable in heat exchange relationship through a cascading heat exchange unit for condensation of the first working fluid in the first rankine cycle system and evaporation of the second working fluid in the second rankine cycle system. At least one recuperator having a hot side and a cold side is disposed in the first rankine cycle system, second rankine cycle system, or combinations thereof. The at least one recuperator is configured to desuperheat and preheat the first working fluid, second working fluid, or combinations thereof.
摘要:
A tri-generation system comprises a heat generation system, a first rankine cycle system, a second rankine cycle system, a cascaded heat exchange unit, at least one first heat exchanger coupled to the second rankine cycle system for heating a third fluid, at least one second heat exchanger disposed at one or more locations in the first rankine cycle system for heating a fourth fluid, and an absorption chiller coupled to the at least one first heat exchanger and the at least one second heat exchanger for receiving the heated third fluid and the heated fourth fluid. The first rankine cycle system is coupled to a first heat source and configured to circulate a first working fluid to remove heat from the first heat source. The second rankine cycle system is coupled to at least one second heat source and configured to circulate a second working fluid to remove heat from the at least one second heat source. The first and second working fluids are circulated in heat exchange relationship through the cascaded heat exchange unit for condensation of the first working fluid in the first rankine cycle system and evaporation of the second working fluid in the second rankine cycle system.