Self-assembling mems devices having thermal actuation
    1.
    发明申请
    Self-assembling mems devices having thermal actuation 有权
    具有热驱动的自组装装置

    公开(公告)号:US20070103029A1

    公开(公告)日:2007-05-10

    申请号:US10558469

    申请日:2004-06-02

    申请人: Gary Fedder Altug Oz

    发明人: Gary Fedder Altug Oz

    IPC分类号: H02N10/00 F01B29/10 F02G1/04

    摘要: The present disclosure is broadly directed to a method for designing new MEMS micro-movers, particularly suited for, but not limited to, CMOS fabrication techniques, that are capable of large lateral displacement for tuning capacitors, fabricating capacitors, self-assembly of small gaps in CMOS processes, fabricating latching structures and other applications where lateral micro-positioning on the order of up to 10 μm, or greater, is desired. Principles of self-assembly and electro-thermal actuation are used for designing micro-movers. In self-assembly, motion is induced in specific beams by designing a lateral effective residual stress gradient within the beams. The lateral residual stress gradient arises from purposefully offsetting certain layers of one material versus another material. For example, lower metal layers may be side by side with dielectric layers, both of which are positioned beneath a top metal layer of a CMOS-MEMS beam. In electro-thermal actuation, motion is induced in specific beams by designing a lateral gradient of temperature coefficient of expansion (TCE) within the beams. The lateral TCE gradient is achieved in the same manner as with self-assembly, by purposefully offsetting the lower metal layers with layers of dielectric with respect to the top metal layer of a CMOS-MEMS beam. A heater resistor, usually made from a CMOS polysilicon layer, is embedded into the beam or into an adjacent assembly to heat the beam. When heated, the TCE gradient will cause a stress gradient in the beam, resulting in the electro-thermal actuation. Because of the rules governing abstracts, this abstract should not be used to construe the claims.

    摘要翻译: 本公开广泛地涉及用于设计新的MEMS微动幅器的方法,其特别适用于但不限于CMOS制造技术,其能够用于调谐电容器的大横向位移,制造电容器,小间隙的自组装 在CMOS工艺中,制造闭锁结构和其它需要侧向微定位大约为10um或更大的应用。 自组装和电热驱动的原理用于设计微动员。 在自组装中,通过在梁内设计横向有效残余应力梯度,在特定梁中引起运动。 侧向残余应力梯度是由有目的地抵消一种材料的某些层与另一种材料相抵消的。 例如,下金属层可以与电介质层并排,它们均位于CMOS-MEMS光束的顶部金属层的下方。 在电热驱动中,通过设计横梁内的温度膨胀系数(TCE)的横向梯度,在特定光束中感应运动。 横向TCE梯度以与自组装相同的方式实现,通过相对于CMOS-MEMS光束的顶部金属层有目的地抵消具有电介质层的下部金属层。 通常由CMOS多晶硅层制成的加热电阻器被嵌入光束或相邻组件中以加热光束。 加热时,TCE梯度将导致光束中的应力梯度,导致电热致动。 由于管理摘要的规则,本摘要不应用于解释索赔。

    Self-assembling MEMS devices having thermal actuation
    2.
    发明授权
    Self-assembling MEMS devices having thermal actuation 有权
    具有热驱动的自组装MEMS器件

    公开(公告)号:US07749792B2

    公开(公告)日:2010-07-06

    申请号:US10558469

    申请日:2004-06-02

    IPC分类号: H01L21/00 H01L21/62

    摘要: The present disclosure is broadly directed to a method for designing new MEMS micro-movers, particularly suited for, but not limited to, CMOS fabrication techniques, that are capable of large lateral displacement for tuning capacitors, fabricating capacitors, self-assembly of small gaps in CMOS processes, fabricating latching structures and other applications where lateral micro-positioning on the order of up to 10 μm, or greater, is desired. Principles of self-assembly and electro-thermal actuation are used for designing micro-movers. In self-assembly, motion is induced in specific beams by designing a lateral effective residual stress gradient within the beams. The lateral residual stress gradient arises from purposefully offsetting certain layers of one material versus another material. For example, lower metal layers may be side by side with dielectric layers, both of which are positioned beneath a top metal layer of a CMOS-MEMS beam. In electro-thermal actuation, motion is induced in specific beams by designing a lateral gradient of temperature coefficient of expansion (TCE) within the beams. The lateral TCE gradient is achieved in the same manner as with self-assembly, by purposefully offsetting the lower metal layers with layers of dielectric with respect to the top metal layer of a CMOS-MEMS beam. A heater resistor, usually made from a CMOS polysilicon layer, is embedded into the beam or into an adjacent assembly to heat the beam. When heated, the TCE gradient will cause a stress gradient in the beam, resulting in the electro-thermal actuation. Because of the rules governing abstracts, this abstract should not be used to construe the claims.

    摘要翻译: 本公开广泛地涉及用于设计新的MEMS微动幅器的方法,其特别适用于但不限于CMOS制造技术,其能够用于调谐电容器的大横向位移,制造电容器,小间隙的自组装 在CMOS工艺中,制造闭锁结构和其它应用,其中需要高达10μm或更大的横向微定位。 自组装和电热驱动的原理用于设计微动员。 在自组装中,通过在梁内设计横向有效残余应力梯度,在特定梁中引起运动。 侧向残余应力梯度是由有目的地抵消一种材料的某些层与另一种材料相抵消的。 例如,下金属层可以与电介质层并排,它们均位于CMOS-MEMS光束的顶部金属层的下方。 在电热驱动中,通过设计横梁内的温度膨胀系数(TCE)的横向梯度,在特定光束中感应运动。 横向TCE梯度以与自组装相同的方式实现,通过相对于CMOS-MEMS光束的顶部金属层有目的地抵消具有电介质层的下部金属层。 通常由CMOS多晶硅层制成的加热电阻器被嵌入光束或相邻组件中以加热光束。 加热时,TCE梯度将导致光束中的应力梯度,导致电热致动。 由于管理摘要的规则,本摘要不应用于解释索赔。