Abstract:
A radiation detector assembly is provided that includes a semiconductor detector, plural pixelated anodes, and at least one processor. The semiconductor detector has a surface. The plural pixelated anodes are configured to generate a primary signal responsive to reception of a photon by the pixelated anode and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one surrounding anode. The at least one processor is configured to: acquire a primary signal from one of the anodes responsive to reception of a photon; acquire at least one secondary signal from at least one neighboring pixel of the one of the anodes, the at least one secondary signal defining a negative value; and determine an energy correction factor for the reception of the photon using the negative value of the at least one secondary signal.
Abstract:
A detector assembly is provided that includes a semiconductor detector, a pinhole collimator, and a processing unit. The semiconductor detector has a first surface and a second surface opposed to each other. The first surface includes pixels, and the second surface includes a cathode electrode. The pinhole collimator includes an array of pinhole openings corresponding to the pixels. Each pinhole opening is associated with a single pixel of the semiconductor detector, and the area of each pinhole opening is smaller than a corresponding area of the corresponding pixel. The processing unit is operably coupled to the semiconductor detector and configured to identify detected events within virtual sub-pixels distributed along a length and width of the semiconductor detector. Each pixel includes a plurality of corresponding virtual sub-pixels (as interpreted by the processing unit), wherein absorbed photons are counted as events in a corresponding virtual sub-pixel.
Abstract:
A method is provided including acquiring detection events with a radiation detector including a semiconductor plate and configured to produce electrical signals in response to absorption of ionizing radiation in the semiconductor plate, wherein electrons and holes are generated responsive to absorption of the ionizing radiation. The semiconductor plate includes a first surface opposed to a second surface, with sidewalls interposed between the first surface and the second surface. A cathode electrode is disposed on the first surface and pixelated anode electrodes are disposed on the second surface. The method also includes optically coupling infrared (IR) radiation into a first portion of at least one of the sidewalls of the semiconductor plate of the radiation detector, and not coupling IR radiation into a second portion of the at least one of the sidewalls.
Abstract:
A detector assembly is provided that includes a semiconductor detector, a collimator and a processing unit. The semiconductor detector has a first surface and a second surface opposed to each other. The first surface includes pixels (which in turn comprise corresponding pixelated anodes), and the second surface includes a cathode electrode. The collimator includes openings, with each opening associated with a single corresponding pixel of the semiconductor detector. The processing unit is configured to identify detected events within virtual sub-pixels distributed along a length and width of the semiconductor detector. Each pixel includes (e.g., has associated therewith) a plurality of corresponding virtual sub-pixels, with absorbed photons are counted as events in a corresponding virtual sub-pixel. Absorbed photons are counted as events within a thickness of the semiconductor detector at a distance corresponding to an energy window width used to identify the events as photon impacts.
Abstract:
A method is provided including, acquiring detection events with a radiation detector including a semiconductor plate and configured to produce electrical signals in response to absorption of ionizing radiation in the semiconductor plate, wherein electrons and holes are generated responsive to absorption of the ionizing radiation. The semiconductor plate includes a first surface opposed to a second surface, with sidewalls interposed between the first surface and the second surface. A cathode electrode is disposed on the first surface and pixelated anode electrodes are disposed on the second surface. The method also includes optically coupling infrared (IR) radiation into a first portion of at least one of the sidewalls of the semiconductor plate of the radiation detector, and not coupling IR radiation into a second portion of the at least one of the sidewalk.
Abstract:
A system includes a detector and a processing module. The detector includes pixels configured to detect an event corresponding to energy from a radiopharmaceutical. The processing module is configured to receive a request for each pixel that detects energy during a reading cycle. The processing module is configured to determine an energy level for each requesting pixel. For each requesting pixel, the processing module is configured to count the event when the energy level corresponds to an energy of the radiopharmaceutical, and to determine a combined energy level of the pixel and at least one adjacent pixel when the energy level does not correspond. The processing module is configured to count the event when the combined energy level corresponds to the energy of the radiopharmaceutical, and to disregard the event when the combined energy level does not correspond to the energy of the radiopharmaceutical.
Abstract:
Collimators for two-dimensional scans of a radiation sources and methods of scanning are provided. One system includes a scan unit for scanning and collecting ionizing radiation emitted from a radiation emitting object is provided. The scan unit includes an array of at least one pixelated radiation detector having an imaging surface including a two-dimensional (2D) array of pixels. The scan unit also includes a collimator positioned between the radiation detector and the radiation emitting object, with the collimator including a 2D array of columns having openings and septa forming bores, wherein the columns are arranged in groups along rows of the 2D array of columns and the bores within one of the groups have a different aspect ratios than the bores in another one of the groups.
Abstract:
The systems and methods described herein measure a collected energy signal from a first pixel of a radiation pixelated detector during at least one event, and measure adjacent energy signals from at least two pixels adjacent to the first pixel of the radiation pixelated detector during the at least one event. The systems and methods generate a first spectrum based on the collected energy signal of the at least one event within an energy window. The energy window is a predetermined energy range for medical imaging. The systems and methods determine a delta charge based on the collected energy signal and the adjacent energy signals generated during the at least one event, generate a second spectrum based on the delta charge of the at least one event outside the energy window, and stretch the second spectrum to combine with the first spectrum to form a corrected energy spectrum.
Abstract:
A radiation detector system is provided that includes a semiconductor detector, plural pixelated anodes, and a side anode. The semiconductor detector has a surface. The pixelated anodes are disposed on the surface, and are arranged in a grid defining a footprint. The side anode is disposed outside of the footprint defined by the plural pixelated anodes, and has a length extending along at least two of the pixelated anodes.
Abstract:
A radiation detector assembly is provided that includes a semiconductor detector having a surface, plural pixelated anodes, and at least one processor. The pixelated anodes are disposed on the surface. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon by the pixelated anode and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes. The at least one processor configured to define sub-pixels for each pixelated anode; acquire signals corresponding to acquisition events from the pixelated anodes; determine sub-pixel locations for the acquisition events using the signals; and apply at least one calibration parameter on a per sub-pixel basis for the acquisition events based on the determined sub-pixel locations.