Abstract:
A detector module for detecting photons includes a detector formed from a semiconductive material, the detector having a first surface, an opposing second surface, and a plurality of sidewalls extending between the first and second surfaces, and a guard band coupled to the sidewalls, the guard band having a length that extends about a circumference of the detector, the guard band having a width that is greater than a thickness of the detector such that an upper rim segment of the guard band projects beyond the first surface of the detector, the upper rim segment being folded over a peripheral region of the first surface along the circumference of the detector, the guard band configured to reduce recombinations proximate to the edges of the detector.
Abstract:
Systems and methods for scanning with radiation detectors are provided. One system includes at least one radiation scanning camera-head, an array of at least one pixelated radiation detector having an imaging surface including a two dimensional array of pixels, and a scanning unit positioned between the radiation detector and the object. The scanning unit includes first and second radiation blocking plates having first and second two-dimensional arrays of openings, respectively, wherein the array of pixels and the first and second arrays of openings have a same pitch. Additionally, for each of a plurality of scan positions of the scanning unit, the first and second moveable plates and the imaging surface are positioned differently with respect to each other to produce different inclination angles in response to each scan position.
Abstract:
A system includes a detector and a processing module. The detector includes pixels configured to detect an event corresponding to energy from a radiopharmaceutical. The processing module is configured to receive a request for each pixel that detects energy during a reading cycle. The processing module is configured to determine an energy level for each requesting pixel. For each requesting pixel, the processing module is configured to count the event when the energy level corresponds to an energy of the radiopharmaceutical, and to determine a combined energy level of the pixel and at least one adjacent pixel when the energy level does not correspond. The processing module is configured to count the event when the combined energy level corresponds to the energy of the radiopharmaceutical, and to disregard the event when the combined energy level does not correspond to the energy of the radiopharmaceutical.
Abstract:
A system includes a detector and a processing module. The detector includes pixels configured to detect an event corresponding to energy from a radiopharmaceutical. The processing module is configured to receive a request for each pixel that detects energy during a reading cycle. The processing module is configured to determine an energy level for each requesting pixel. For each requesting pixel, the processing module is configured to count the event when the energy level corresponds to an energy of the radiopharmaceutical, and to determine a combined energy level of the pixel and at least one adjacent pixel when the energy level does not correspond. The processing module is configured to count the event when the combined energy level corresponds to the energy of the radiopharmaceutical, and to disregard the event when the combined energy level does not correspond to the energy of the radiopharmaceutical.
Abstract:
Collimators for two-dimensional scans of a radiation sources and methods of scanning are provided. One system includes a scan unit for scanning and collecting ionizing radiation emitted from a radiation emitting object is provided. The scan unit includes an array of at least one pixelated radiation detector having an imaging surface including a two-dimensional (2D) array of pixels. The scan unit also includes a collimator positioned between the radiation detector and the radiation emitting object, with the collimator including a 2D array of columns having openings and septa forming bores, wherein the columns are arranged in groups along rows of the 2D array of columns and the bores within one of the groups have a different aspect ratios than the bores in another one of the groups.
Abstract:
A detector module for detecting photons includes a detector formed from a semiconductive material, the detector having a first surface, an opposing second surface, and a plurality of sidewalls extending between the first and second surfaces, and a guard band coupled to the sidewalls, the guard band having a length that extends about a circumference of the detector, the guard band having a width that is greater than a thickness of the detector such that an upper rim segment of the guard band projects beyond the first surface of the detector, the upper rim segment being folded over a peripheral region of the first surface along the circumference of the detector, the guard band configured to reduce recombinations proximate to the edges of the detector.
Abstract:
A detector module for detecting photons includes a detector formed from a semiconductive material, the detector having a first surface, an opposing second surface, and a plurality of sidewalls extending between the first and second surfaces, and a guard band coupled to the sidewalls, the guard band having a length that extends about a circumference of the detector, the guard band having a width that is greater than a thickness of the detector such that an upper rim segment of the guard band projects beyond the first surface of the detector, the upper rim segment being folded over a peripheral region of the first surface along the circumference of the detector, the guard band configured to reduce recombinations proximate to the edges of the detector.
Abstract:
A system for growing a crystal is provided that includes a crucible, a furnace, and a heat transfer device. The crucible has a first volume to receive therein a material for growing a crystal. The furnace has an ampoule configured to receive the crucible within the ampoule. The furnace is configured to produce a lateral thermal profile combined with a vertical thermal gradient. The heat transfer device is disposed under the crucible and configured to produce a leading edge of growth of the crystal at a bottom of the crucible. The heat transfer device includes at least one elongate member disposed beneath the crucible and extending along a length of the crucible.
Abstract:
Collimators for two-dimensional scans of a radiation sources and methods of scanning are provided. One system includes a scan unit for scanning and collecting ionizing radiation emitted from a radiation emitting object is provided. The scan unit includes an array of at least one pixelated radiation detector having an imaging surface including a two-dimensional (2D) array of pixels. The scan unit also includes a collimator positioned between the radiation detector and the radiation emitting object, with the collimator including a 2D array of columns having openings and septa forming bores, wherein the columns are arranged in groups along rows of the 2D array of columns and the bores within one of the groups have a different aspect ratios than the bores in another one of the groups.
Abstract:
A detector module for detecting photons includes a detector formed from a semiconductive material, the detector having a first surface, an opposing second surface, and a plurality of sidewalls extending between the first and second surfaces, and a guard band coupled to the sidewalls, the guard band having a length that extends about a circumference of the detector, the guard band having a width that is greater than a thickness of the detector such that an upper rim segment of the guard band projects beyond the first surface of the detector, the upper rim segment being folded over a peripheral region of the first surface along the circumference of the detector, the guard band configured to reduce recombinations proximate to the edges of the detector.