Abstract:
A method for producing one or more cooling holes in an airfoil for a gas turbine engine is disclosed. The method includes casting one or more hole starter bosses on a suction side, a pressure side, or both of the airfoil, drilling the one or more cooling holes into the airfoil by way of the one or more hole starter bosses, and removing the one or more hole starter bosses after drilling the one or more cooling holes into the airfoil.
Abstract:
A method for producing one or more cooling holes in an airfoil for a gas turbine engine is disclosed. The method includes casting one or more hole starter bosses on a suction side, a pressure side, or both of the airfoil, drilling the one or more cooling holes into the airfoil by way of the one or more hole starter bosses, and removing the one or more hole starter bosses after drilling the one or more cooling holes into the airfoil.
Abstract:
A turbomachine airfoil includes a base portion and a blade portion extending from the base portion to a tip portion defining a radial span dimension. The blade portion includes a leading edge, a trailing edge, a pressure side and a suction side. An axial chord dimension is defined between the leading edge and the trailing edge. At least one protuberance is provided on the pressure side. The at least one protuberance extends from about 10% of the axial chord dimension to about 90% of the axial chord dimension.
Abstract:
A turbine blade comprises a cooling passage defined between a pressure side wall and a suction side wall. A pin is disposed within the cooling passage and includes a first end that is connected to the pressure side wall and a second end that is connected to the suction side wall. A radially oriented fillet having a maximum radius of curvature value is disposed along a periphery of at least one of the first end or the second end within a region of peak steady state stress. An axially oriented fillet having a maximum radius of curvature value is disposed along a periphery of at least one of the first end or second end within a region of peak vibratory stress. The maximum radius of curvature value of the axially oriented fillet is greater than the maximum radius of curvature value of the radially oriented fillet.
Abstract:
A damper pin for damping adjacent turbine blades coupled to a rotor shaft includes a first end portion that is axially aligned with and axially spaced from a second end portion and a retention pin that is coaxially aligned with and disposed between the first end portion and the second end portion. The retention pin couples the first end portion to the second end portion. The damper pin further includes a plurality of rings coaxially aligned with and disposed along the retention pin between the first end portion and the second end portion. The first end portion, the second end portion and the plurality of rings define a generally arcuate outer surface of the damper pin that is configured to contact with a groove defined between the adjacent turbine blades.
Abstract:
An article and a process of producing an article are provided. The article includes a base material, a cooling feature arrangement positioned on the base material, the cooling feature arrangement including an additive-structured material, and a cover material. The cooling feature arrangement is between the base material and the cover material. The process of producing the article includes manufacturing a cooling feature arrangement by an additive manufacturing technique, and then positioning the cooling feature arrangement between a base material and a cover material.
Abstract:
A damper pin for damping adjacent turbine blades coupled to a rotor shaft includes a first end portion that is axially spaced from a second end portion and a spring member that extends axially from an inner surface of the first end portion to an inner surface of the second end portion. The first end portion, the spring member and the second end portion define a generally arcuate top portion of the damper pin. The top portion is configured to contact with a groove defined between the adjacent turbine blades.
Abstract:
A method for producing one or more cooling holes in an airfoil for a gas turbine engine is disclosed. The method includes casting one or more hole starter bosses on a suction side, a pressure side, or both of the airfoil, drilling the one or more cooling holes into the airfoil by way of the one or more hole starter bosses, and removing the one or more hole starter bosses after drilling the one or more cooling holes into the airfoil.
Abstract:
A damper pin for damping adjacent turbine blades coupled to a rotor shaft includes a first end portion that is axially aligned with and axially spaced from a second end portion and a retention pin that is coaxially aligned with and disposed between the first end portion and the second end portion. The retention pin couples the first end portion to the second end portion. The damper pin further includes a plurality of rings coaxially aligned with and disposed along the retention pin between the first end portion and the second end portion. The first end portion, the second end portion and the plurality of rings define a generally arcuate outer surface of the damper pin that is configured to contact with a groove defined between the adjacent turbine blades.
Abstract:
A damper pin for damping adjacent turbine blades coupled to a rotor shaft includes a first end portion that is axially spaced from a second end portion and a spring member that extends axially from an inner surface of the first end portion to an inner surface of the second end portion. The first end portion, the spring member and the second end portion define a generally arcuate top portion of the damper pin. The top portion is configured to contact with a groove defined between the adjacent turbine blades.