Abstract:
A multi-piece part includes multiple pieces fabricated via different types of fabrication processes, wherein the multiple parts are configured to be coupled to one another to form the assembly. At least one of the multiple parts is fabricated via an additive manufacturing method. The multi-piece part also includes a holder assembly that couples and holds together the multiple pieces of the multi-piece part, wherein the holder assembly comprises a reversible, mechanical-type coupling.
Abstract:
An article and method of forming an article are provided. The article includes a side wall at least partially defining an inner region and an outer region of the article, the side wall having a first end and a second end, an end wall formed proximal to the first end of the side wall, the end wall defining a tip portion of the article, and a cooling channel formed in the side wall, within the tip portion. The method of forming an article includes positioning a first sheet of material having a channel formed therein over a first end of a body, positioning at least one additional sheet of material over the first sheet of material, and securing the first sheet of material and the at least one additional sheet of material to the body to form a tip portion including a cooling channel formed therein.
Abstract:
A nozzle has a main body having an input side and an output side, a central region and two opposing end regions. A plurality of linearly arranged apertures extend from the input side to the output side, and each of the apertures has a respective opening. At least one opening in the central region is smaller than at least one opening in the end regions.
Abstract:
An article and method of forming an article are provided. The article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and a conduit extending from an outer surface of the body portion at the aperture and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The method includes providing a body portion separating an inner region and an outer region, providing an aperture in the body portion, and forming a conduit over the aperture, the conduit extending from an outer surface of the body portion and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The article is arranged and disposed for insertion within a hot gas path component.
Abstract:
A method of manufacturing a metal object by selective melting of a metal powder is provided. The method includes forming the metal object layer by layer in a metal powder bed on a retractable build platform. During the forming, a metal sleeve is provided spaced apart from and substantially paralleling an outer surface of the metal object, the metal sleeve being separated from the metal object by a gap filled with non-melted metal powder. The metal sleeve reduces thermal distortions in the object. An additive manufacturing system that includes a metallic sleeve that surrounds the metal object as it is formed is also disclosed.
Abstract:
An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of depositing a metal alloy powder to form an initial layer including at least one aperture, melting the metal alloy powder with a focused energy source to transform the powder layer to a sheet of metal alloy, sequentially depositing an additional layer of the metal alloy powder to form a layer including at least one aperture corresponding to the at least one aperture in the initial layer, melting the additional layer of the metal alloy powder with the focused energy source to increase the sheet thickness, and repeating the steps of sequentially depositing and melting the additional layers of metal alloy powder until a structure including at least one aperture having a predetermined profile is obtained. The structure is attached to a substrate to make the article.
Abstract:
A nickel alloy for direct metal laser melting is disclosed. The alloy comprising includes a powder that contains about 1.6 to about 2.8 weight percent aluminum, about 2.2 to about 2.4 weight percent titanium, about 1.25 to about 2.05 weight percent niobium, about 22.2 to about 22.8 weight percent chromium, about 8.5 to about 19.5 weight percent cobalt, about 1.8 to about 2.2 weight percent tungsten, about 0.07 to about 0.1 weight percent carbon, about 0.002 to about 0.015 weight percent boron, and about 40 to about 70 weight percent nickel. Related processes and articles are also disclosed.
Abstract:
Methods for modifying a plurality of cooling holes of a component include disposing a recess-shaped modification in a recess of the component comprising a plurality of cooling hole outlets, wherein the recess-shaped modification is formed to substantially fill the recess and comprising a plurality of modified cooling holes passing there through. The method further includes aligning the plurality of modified cooling holes of the recess-shaped modification with the plurality of cooling hole outlets of the component, and, bonding the recess-shaped modification disposed in the recess to the component, wherein the plurality of modified cooling holes of the recess-shaped modification is fluidly connected with the plurality of cooling holes of the component.
Abstract:
A turbine component is provided. The turbine component includes an airfoil having a first surface and a second surface. A thermal barrier coating is coupled to the second surface, wherein the thermal barrier coating includes a first portion, a second portion and a trench defined between the first and second portions. A channel is coupled in flow communication to the first surface and the trench, wherein the channel includes a first sidewall and a second sidewall opposite of the first sidewall. The first and second sidewalls extend from the first surface and toward the trench at an angle. The turbine component includes a cover coupled to the second surface, wherein the cover includes a first end coupled to the first portion and a second end extending into the trench and spaced from the second portion.
Abstract:
A cooling structure for a turbomachine. In one embodiment, the cooling structure is for a seal slot of the turbomachine. The cooling structure includes a body coupled to a surface of the seal slot. The body includes a passageway on a first surface of the body for providing a cooling fluid to the seal slot. In an other embodiment, a apparatus includes a first component and a second component adjacent the first component. The apparatus also includes a seal slot extending between the first component and the second component, and a cooling structure positioned within the seal slot. The cooling structure includes a body coupled to a surface of the seal slot. The body has a passageway on a first surface of the body for providing a cooling fluid to the seal slot.