摘要:
The present approach generally relates to systems and methods for implementing energy modulated tomographic imaging of nanoparticles. In certain embodiments, a first energy is used to activate probe particles labeling an anatomy or tissue of interest. The probe particles, once activated, emit photons at a different rate and/or spectrum in response to an underlying physiological event, such as action potentials propagating in the labeled anatomy or tissue. The emitted photons may then be detected and used to map or image the occurrence of the physiological event.
摘要:
The present disclosure relates to image reconstruction with favorable properties in terms of noise reduction, spatial resolution, detail preservation and computational complexity. The disclosed techniques may include some or all of: a first-pass reconstruction, a simplified datafit term, and/or a deep learning denoiser. In various implementations, the disclosed technique is portable to different CT platforms, such as by incorporating a first-pass reconstruction step.
摘要:
The present approach generally relates to systems and methods for implementing energy modulated tomographic imaging of nanoparticles. In certain embodiments, a first energy is used to activate probe particles labeling an anatomy or tissue of interest. The probe particles, once activated, emit photons at a different rate and/or spectrum in response to an underlying physiological event, such as action potentials propagating in the labeled anatomy or tissue. The emitted photons may then be detected and used to map or image the occurrence of the physiological event.
摘要:
The present disclosure relates to image reconstruction with favorable properties in terms of noise reduction, spatial resolution, detail preservation and computational complexity. The disclosed techniques may include some or all of: a first-pass reconstruction, a simplified datafit term, and/or a deep learning denoiser. In various implementations, the disclosed technique is portable to different CT platforms, such as by incorporating a first-pass reconstruction step.
摘要:
A method of generating an image in one embodiment includes acquiring, with a computed tomography (CT) acquisition unit, CT projection data from at least a region of interest (ROI), and concurrently acquiring, with a magnetic resonance (MR) acquisition unit, MR imaging information of at least a portion of the ROI. The method also includes determining a motion of the at least a portion of the ROI using the MR imaging information, and reconstructing the image using the CT projection data. Reconstructing the image includes motion correcting the CT projection data based on the motion determined using the MR imaging information.
摘要:
A method includes receiving, with at least one processor, a first projection dataset corresponding to X-rays at a first energy level projected towards a subject at a first set of view angles and receiving, with the at least one processor, a second projection dataset corresponding to X-rays at a second energy level projected towards the subject at a second set of view angles. The method further includes identifying, with the at least one processor, a metal trace from at least one of the first projection dataset and the second projection dataset. Moreover, the method includes converting, with the at least one processor, at least a portion of the first projection dataset to a pseudo dataset at the second energy level. The method also includes generating, with the at least one processor, a final image of the subject based on the second projection dataset, the pseudo dataset, and the metal trace.
摘要:
A method includes receiving, with at least one processor, a first projection dataset corresponding to X-rays at a first energy level projected towards a subject at a first set of view angles and receiving, with the at least one processor, a second projection dataset corresponding to X-rays at a second energy level projected towards the subject at a second set of view angles. The method further includes identifying, with the at least one processor, a metal trace from at least one of the first projection dataset and the second projection dataset. Moreover, the method includes converting, with the at least one processor, at least a portion of the first projection dataset to a pseudo dataset at the second energy level. The method also includes generating, with the at least one processor, a final image of the subject based on the second projection dataset, the pseudo dataset, and the metal trace.
摘要:
A method of generating an image in one embodiment includes acquiring, with a computed tomography (CT) acquisition unit, CT projection data from at least a region of interest (ROI), and concurrently acquiring, with a magnetic resonance (MR) acquisition unit, MR imaging information of at least a portion of the ROI. The method also includes determining a motion of the at least a portion of the ROI using the MR imaging information, and reconstructing the image using the CT projection data. Reconstructing the image includes motion correcting the CT projection data based on the motion determined using the MR imaging information.