Abstract:
Systems and methods for controlling mode transfers of a turbine combustor are provided. According to one embodiment, a system may include a controller to control a combustor, and a processor communicatively coupled to the controller. The processor may be configured to receive current operating conditions, target operating limits, and combustor transfer functions. The combustor transfer functions may be evaluated to estimate operating limits associated with one or more combustion modes under the current operating conditions. The estimated operating limits associated with the one or more combustor modes may be compared to the target operating limits, and, based on the comparison, at least one of the combustion modes may be selected. The combustor may then be selectively transferred to the selected combustion mode.
Abstract:
A gas turbine includes a compressor section, a combustion section downstream from the compressor section, a turbine section downstream from the combustion section, and a controller. The controller controls the operation of the gas turbine at a reduced load, and is capable of querying a database including multiple sets of operational parameters for the gas turbine correlated with at least one measured output response at each set of operational parameters. One of the sets of operational parameters provides a desired gas turbine load that meets a target level for the output response. Related methods are also disclosed.
Abstract:
A fuel nozzle for use in a gas turbine includes a pre-mix flow passage for directing a flow segment of a flow of a working fluid through the fuel nozzle. A first swirler vane and a second swirler vane extend within the pre-mix flow passage. The first swirler vane provides a first wake region within the flow segment. The second swirler vane provides a second wake region within the flow segment. A fuel injection peg is disposed downstream from the first swirler vane and the second swirler vane. The fuel injection peg is positioned within the flow segment between the first wake region and the second wake region.
Abstract:
A fuel nozzle for use in a gas turbine includes a pre-mix flow passage for directing a flow segment of a flow of a working fluid through the fuel nozzle. A first swirler vane and a second swirler vane extend within the pre-mix flow passage. The first swirler vane provides a first wake region within the flow segment. The second swirler vane provides a second wake region within the flow segment. A fuel injection peg is disposed downstream from the first swirler vane and the second swirler vane. The fuel injection peg is positioned within the flow segment between the first wake region and the second wake region.
Abstract:
Systems and methods for controlling mode transfers of a turbine combustor are provided. According to one embodiment, a system may include a controller to control a combustor, and a processor communicatively coupled to the controller. The processor may be configured to receive current operating conditions, target operating limits, and combustor transfer functions. The combustor transfer functions may be evaluated to estimate operating limits associated with one or more combustion modes under the current operating conditions. The estimated operating limits associated with the one or more combustor modes may be compared to the target operating limits, and, based on the comparison, at least one of the combustion modes may be selected. The combustor may then be selectively transferred to the selected combustion mode.
Abstract:
Systems and methods for automating commissioning of a gas turbine combustion control system are provided. According to one embodiment of the disclosure, a system may include a controller and a processor communicatively coupled to the controller. The processor may be configured to run a gas turbine under a plurality of operational conditions while within predetermined combustion operational boundaries. The processor may be further configured to automatically collect operational data associated with the gas turbine while the gas turbine is running and store the operational data. Based at least in part on the operational data, a set of constants for one or more predetermined combustion transfer functions is generated. The set of constants is stored in the gas turbine combustion control system to be used during auto-tune operations of the gas turbine.
Abstract:
A gas turbine engine having a combustor that includes: an inner radial wall defining a first interior chamber and a second interior chamber, wherein the first interior chamber extends axially from an end cover to a primary fuel injector, and the second interior chamber extends axially from the primary fuel injector to the turbine; an outer radial wall formed about the inner radial wall so that a flow annulus is formed therebetween; upstream fuel nozzles jutting into the flow annulus from the outer radial wall. The upstream fuel nozzles may include non-uniform circumferential spacing about the inner radial wall.