Abstract:
A protection system includes a control module, a switch, and an inductive device. The control module is used to provide control signals and switching signals based at least in part on a detected signal measured by a detecting device. The control signals include a first control signal corresponding to a normal mode and a second control signal corresponding to a fault mode. The switch is switched on and off according to the switching signals. The inductive device is coupled with the switch. The inductive device is controlled to be operated with a first inductance in response to the first control signal provided from the control module and a second inductance in response to the second control signal provided from the control module.
Abstract:
A protection system includes a control module, a switch, and an inductive device. The control module is used to provide control signals and switching signals based at least in part on a detected signal measured by a detecting device. The control signals include a first control signal corresponding to a normal mode and a second control signal corresponding to a fault mode. The switch is switched on and off according to the switching signals. The inductive device is coupled with the switch. The inductive device is controlled to be operated with a first inductance in response to the first control signal provided from the control module and a second inductance in response to the second control signal provided from the control module.
Abstract:
A method used to control the operation of a converting device such that it can provide multi-level output voltage for loads. This method comprises at least the steps of: determine whether the load which the converter is providing electricity for is operating under the first condition or the second condition; generate the first pulse signal after determining that this load is operating under the first condition, select at least one of at least three different current paths, such that when the converter is selecting any of the current paths, it can provide output voltage at the same level; as well as generate the second pulse signal after determining that this load is operating under the second condition, such that the converter can perform the regular energy conversion operations.
Abstract:
A power conversion system includes at least one multi-level power converter and a controller coupled to the at least one multi-level power converter. The controller includes a first CMV injection module and a second CMV injection module. The first CMV injection module generates a first CMV signal for modifying at least one voltage command to achieve a first function in association with operation of the power conversion system. The second CMV injection module generates a second CMV signal based at least in part on a local limit either for modifying the at least one voltage command or for further modifying the at least one modified voltage command to achieve a second function in association with operation of the power conversion system.
Abstract:
A power conversion system includes at least one multi-level power converter and a controller coupled to the at least one multi-level power converter. The controller includes a first CMV injection module and a second CMV injection module. The first CMV injection module generates a first CMV signal for modifying at least one voltage command to achieve a first function in association with operation of the power conversion system. The second CMV injection module generates a second CMV signal based at least in part on a local limit either for modifying the at least one voltage command or for further modifying the at least one modified voltage command to achieve a second function in association with operation of the power conversion system.