Abstract:
Examples of a modular compression chamber for use in a compression system are disclosed. The modular compression chamber comprises a plurality of individual modules and a plurality of fasteners to attach the plurality of modules in an interlocking fashion to form the chamber. The modules have a pre-determined geometry and size to form a compression chamber with a desired geometry and size. The plurality of fasteners keeps each of the individual modules in compression with neighboring modules so that the formed chamber maintains its integrity during operation. The modules can comprise a plurality of pressure wave generators to generate a pressure wave within the chamber. In one embodiment, the pressure wave generators have a pre-determined geometry and size and are configured to interlock with the neighboring generators forming the individual modules. The fasteners are configured to maintain intimate contact between side walls of the adjacent pressure wave generators.
Abstract:
Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.
Abstract:
Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.
Abstract:
Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.
Abstract:
Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.
Abstract:
Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.
Abstract:
Examples of a pressure wave generator configured to generate high energy pressure waves in a medium are disclosed. The pressure wave generator can include a movable piston with a guide through which a piston control rod can move or slide. The pressure wave generator can include a transducer coupled to a medium. During an impact of the piston on the transducer, the control rod can slide in the guide, which can reduce stress on the rod. The pressure wave generator can include a damper to decelerate the control rod, independently of the piston. Impact of the piston on the transducer transfers a portion of the piston's kinetic energy into the medium thereby generating pressure waves in the medium. A piston driving system may be used to provide precise and controlled launching or movement of the piston. Examples of methods of operating the pressure wave generator are disclosed.
Abstract:
Examples of a modular compression chamber for use in a compression system are disclosed. The modular compression chamber comprises a plurality of individual modules and a plurality of fasteners to attach the plurality of modules in an interlocking fashion to form the chamber. The modules have a pre-determined geometry and size to form a compression chamber with a desired geometry and size. The plurality of fasteners keeps each of the individual modules in compression with neighboring modules so that the formed chamber maintains its integrity during operation. The modules can comprise a plurality of pressure wave generators to generate a pressure wave within the chamber. In one embodiment, the pressure wave generators have a pre-determined geometry and size and are configured to interlock with the neighboring generators forming the individual modules. The fasteners are configured to maintain intimate contact between side walls of the adjacent pressure wave generators.
Abstract:
Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.
Abstract:
Examples of a pressure wave generator configured to generate high energy pressure waves in a medium are disclosed. The pressure wave generator can include a movable piston with a guide through which a piston control rod can move or slide. The pressure wave generator can include a transducer coupled to a medium. During an impact of the piston on the transducer, the control rod can slide in the guide, which can reduce stress on the rod. The pressure wave generator can include a damper to decelerate the control rod, independently of the piston. Impact of the piston on the transducer transfers a portion of the piston's kinetic energy into the medium thereby generating pressure waves in the medium. A piston driving system may be used to provide precise and controlled launching or movement of the piston. Examples of methods of operating the pressure wave generator are disclosed.