摘要:
A computer system employs a network that between a data programming system and one or more superconducting programmable devices of a superconducting processor chip. Routers on the network, such as first-, second- and third-stage routers direct communications with the superconducting programmable devices. A superconducting memory register may load data signals received from a first-stage router into corresponding superconducting programmable devices. The system may employ additional superconducting chips, first-, second- or third-stage routers.
摘要:
Systems, methods and apparatus for a scalable quantum processor architecture. A quantum processor is locally programmable by providing a memory register with a signal embodying device control parameter(s), converting the signal to an analog signal; and administering the analog signal to one or more programmable devices.
摘要:
Systems, methods and apparatus for a scalable quantum processor architecture. A quantum processor is locally programmable by providing a memory register with a signal embodying device control parameter(s), converting the signal to an analog signal; and administering the analog signal to one or more programmable devices.
摘要:
Systems, methods and apparatus for a scalable quantum processor architecture. A quantum processor is locally programmable by providing a memory register with a signal embodying device control parameter(s), converting the signal to an analog signal; and administering the analog signal to one or more programmable devices.
摘要:
Systems, methods and apparatus for a scalable quantum processor architecture. A quantum processor is locally programmable by providing a memory register with a signal embodying device control parameter(s), converting the signal to an analog signal; and administering the analog signal to one or more programmable devices.
摘要:
Systems, methods and apparatus for a scalable quantum processor architecture. A quantum processor is locally programmable by providing a memory register with a signal embodying device control parameter(s), converting the signal to an analog signal; and administering the analog signal to one or more programmable devices.
摘要:
A computer system employs a network that between a data programming system and one or more superconducting programmable devices of a superconducting processor chip. Routers on the network, such as first-, second- and third-stage routers direct communications with the superconducting programmable devices. A superconducting memory register may load data signals received from a first-stage router into corresponding superconducting programmable devices. The system may employ additional superconducting chips, first-, second- or third-stage routers.
摘要:
Systems, methods and apparatus for a scalable quantum processor architecture. A quantum processor is locally programmable by providing a memory register with a signal embodying device control parameter(s), converting the signal to an analog signal; and administering the analog signal to one or more programmable devices.
摘要:
A superconducting flux digital-to-analog converter includes a superconducting inductor ladder circuit. The ladder circuit includes a plurality of closed superconducting current paths that each includes at least two superconducting inductors coupled in series to form a respective superconducting loop, successively adjacent or neighboring superconducting loops are connected in parallel with each other and share at least one of the superconducting inductors to form a flux divider network. A data signal input structure provides a respective bit of a multiple bit signal to each of the superconducting loops. The data signal input structure may include a set of superconducting quantum interference devices (SQUIDs). The data signal input structure may include a superconducting shift register, for example a single-flux quantum (SFQ) shift register or a flux-based superconducting shift register comprising a number of latching qubits.
摘要:
SQUIDs may detect local magnetic fields. SQUIDS of varying sizes, and hence sensitivities may detect different magnitudes of magnetic fields. SQUIDs may be oriented to detect magnetic fields in a variety of orientations, for example along an orthogonal reference frame of a chip or wafer. The SQUIDS may be formed or carried on the same chip or wafer as a superconducting processor (e.g., a superconducting quantum processor). Measurement of magnetic fields may permit compensation, for example allowing tuning of a compensation field via a compensation coil and/or a heater to warm select portions of a system. A SQIF may be implemented as a SQUID employing an unconventional grating structure. Successful fabrication of an operable SQIF may be facilitated by incorporating multiple Josephson junctions in series in each arm of the unconventional grating structure.