摘要:
A method for co-registering a semiconductor wafer (14) undergoing work in one or more blind process modules (10), (12) requires a means (16), (18) for consistently and repeatably registering the semiconductor wafer (14) to each process module (10), (12). Given this consistent and repeatable singular wafer registration means (16), (18), the location of the coordinate axes of each process module (10), (12) is determined with respect to the position of the semiconductor wafer (14) that is registered therein. The present invention method provides three approaches for determining the location of these axes: (1) an absolute location of the axes, (2) a relative location of the axes using one blind process module (10) to measure the position of a pattern etched into the semiconductor wafer (14) with another blind process module (12), and (3) a relative location of the axes using one blind process module (10) to measure surface or layer thickness characteristics in the semiconductor wafer (14) as modified by wafer processing. Regardless of which approach is followed, the determination of the location of the coordinate axes in each process module (10), (12) is an effective co-registration of the semiconductor wafer (14).
摘要:
A method for controlling the flow of semiconductor wafers within a semiconductor wafer processing facility. This method includes a wafer storage and preparation area (10) and a wafer metrology and etch area (12), both of which are monitored and/or controlled by a master controller (14). The wafer storage and preparation area (10) is typically kept at a class 10 clean room level and is comprised of a wafer storage area (16) and a wafer preparation area (18). The wafer metrology and etch area (12) is typically kept at a class 1000 clean room level and is comprised of an I/O cassette module (22), a wafer pre-aligner (24), a wafer router (26), a wafer metrology instrument (28), and a wafer etching instrument (30). The semiconductor wafers are transported, either manually or automatically, between the wafer storage area (16) and the wafer preparation area (18), as well as between the wafer storage and preparation area (10) and the wafer metrology and etch area (12), within wafer storage cassettes ( 20). The semiconductor wafers are individually transported between the I/O cassette module (22), the wafer pre-aligner (24), the wafer metrology instrument (28), and the wafer etching instrument (30) by the wafer router (26).
摘要:
A support and positioning apparatus (10) for supporting and positioning a wafer (12), substrate or the like in a plasma assisted chemical etching process. Surround components (14, 16, 18, 20) positioned around the substrate (12) are comprised of substantially pure magnesium or are aluminum coated with a magnesium fluoride coating such that as a plasma tool associated with the plasma etching process traverses the edge of the substrate (12), the plasma etching environment generated from a fluorine containing feed gas emitted from the plasma tool does not significantly erode the surround components (14, 16, 18, 20) or cause contamination of the substrate (12).
摘要:
A method and apparatus for moving an article relative to and between a pair of distance sensing probes of a thickness measuring apparatus which are spaced apart a known distance D is described. In the method, the article is moved relative to and between the pair of probes in at least one direction in a plane normal to a common measurement axis Ac between the probes. A distance a along the common measurement axis Ac between the first probe and a point on the surface of the article nearest to the first probe of the pair that intersects the common measurement axis Ac is measured. A similar distance b between the second probe and the article is measured. From the measured distance a, the article is moved relative to the probes along the common measurement axis Ac so as to minimize any difference between the measured distance a and a desired distance ad along the common measurement axis Ac between the first probe and a point on the surface of the article nearest to the first probe that intersects the common measurement axis. The measured distances a and b and the position of the article relative to the probes in at least one direction are recorded at predetermined time intervals to develop a thickness map of the article. In a thickness computation, all of the measured distances a for each recorded position of the article are substantially the same.