Current-driven emissive display addressing and fabrication scheme
    1.
    发明授权
    Current-driven emissive display addressing and fabrication scheme 失效
    电流驱动的发射显示器寻址和制造方案

    公开(公告)号:US06421033B1

    公开(公告)日:2002-07-16

    申请号:US09527147

    申请日:2000-03-16

    IPC分类号: G09G320

    摘要: An addressing scheme for use with current-driven emissive displays requires that an N-row by M-column array of pixels be divided into K segments of N/K rows each. One transistor-controlled current driver is provided for each column of pixels within a segment, and all of a segment's current drivers are connected to a respective gate address line. The array is addressed by dividing a frame time into N/K “sub-frame” times. During the first sub-frame time, the current drivers of each segment are turned on in sequence, and the first row of each segment addressed. The remaining rows are addressed in this manner during subsequent sub-frame times. The segmenting and addressing scheme reduces the duty ratio required to drive the array by a factor of K, and reduces the number of transistors required to drive the array by a factor of N/K, when compared with comparably-sized passive matrix and active matrix displays, respectively. Fabrication of the display, and other non-passive matrix displays, is simplified by placing all active components on the back side of the display panel, or on a separate printed-circuit board (PCB) which is interconnected with the pixel array via respective surface bonding pads to form a display. Fabrication is further simplified by combining the current drivers and other drive electronics into application-specific integrated circuits (ASICs).

    摘要翻译: 与电流驱动发射显示器一起使用的寻址方案要求将N行×M列像素阵列分别划分为N / K行的K个片段。 一个晶体管控制的电流驱动器被提供用于一段内的每列像素,并且一段的电流驱动器连接到相应的栅极地址线。 通过将帧时间除以N / K“子帧”次来寻址阵列。 在第一子帧时间期间,每个段的当前驱动器依次打开,并且每个段的第一行被寻址。 在随后的子帧时间内以这种方式寻址剩余的行。 与比较尺寸的无源矩阵和有源矩阵相比,分段和寻址方案将驱动阵列所需的占空比降低了K倍,并将驱动阵列所需的晶体管数量减少了N / K 显示。 通过将所有有源组件放置在显示面板的背面,或者通过相应表面与像素阵列互连的单独的印刷电路板(PCB)上来简化显示器和其它非无源矩阵显示器的制造 接合垫以形成显示器。 通过将当前驱动器和其他驱动电路组合到专用集成电路(ASIC)中,进一步简化了制作。

    Electronic light emissive displays incorporating transparent and conductive zinc oxide thin film
    2.
    发明授权
    Electronic light emissive displays incorporating transparent and conductive zinc oxide thin film 失效
    电子发光显示器结合透明和导电氧化锌薄膜

    公开(公告)号:US06541908B1

    公开(公告)日:2003-04-01

    申请号:US09410130

    申请日:1999-09-30

    IPC分类号: H01J162

    摘要: The present invention provides co-doped zinc oxide to flat panel, light emissive display devices and vacuum microelectronic devices to improve their efficiency and lifetime. This material has a low growth temperature and is compatible with metal oxide semiconductor (MOS) processing technology. It is tranparent, chemically stable and has a low work function, which result in many advantages when being used as the cathode for the aforementioned devices. In one embodiment of the emissive display device, an organic light diode (OLED) display has a high work function metal anode, such as platinum (Pt), gold (Au) or nickel (Ni) and a low work function co-doped zinc oxide cathode. Because of the energy level alignment provided by these two materials, the potential energy barriers to injection of electrons from the cathode and holes from the anode into the organic emissive medium are minimized so the display device operates more efficiently.

    摘要翻译: 本发明为平板,发光显示装置和真空微电子器件提供共掺氧化锌以提高其效率和寿命。 该材料的生长温度低,与金属氧化物半导体(MOS)加工技术相适应。 它是透明的,化学稳定的并且具有低功函数,当用作上述器件的阴极时,其具有许多优点。 在发光显示装置的一个实施例中,有机光二极管(OLED)显示器具有高功函金属阳极,例如铂(Pt),金(Au)或镍(Ni)和低功函数共掺锌 氧化物阴极。 由于由这两种材料提供的能级对准,使从阴极注入电子和从阳极到有机发射介质的空穴的势能最小化,因此显示装置更有效地运行。

    Broadband optical upconversion by energy transfer from dye antenna to upconverting crystal
    3.
    发明授权
    Broadband optical upconversion by energy transfer from dye antenna to upconverting crystal 有权
    通过从染料天线到上变频晶体的能量转移的宽带光学上变频

    公开(公告)号:US08724214B2

    公开(公告)日:2014-05-13

    申请号:US13607408

    申请日:2012-09-07

    IPC分类号: G02F1/35 C09K11/02

    CPC分类号: G02F1/3526 B82Y20/00

    摘要: An optical upconverting nanomaterial includes a nanocrystal, a ligand layer directly bonded to the nanocrystal, and an optical antenna directly or indirectly bonded to the nanocrystal. The nanocrystal includes a transition metal-doped material exhibiting upconversion to optical wavelengths. The transition metal-doped material includes energy transfer facilitating transition metal dopants and (not necessarily distinct) emitter transition metal dopants, where an absorption spectrum of the energy transfer facilitating transition metal dopants overlaps with an emission spectrum of the optical antenna. The optical upconverting nanomaterial has at least one linear dimension (e.g., width or thickness) that is less than 150 nm in extent.

    摘要翻译: 光学上变频纳米材料包括纳米晶体,直接结合到纳米晶体的配体层,以及直接或间接地结合到纳米晶体的光学天线。 纳米晶体包括过渡金属掺杂材料,其表现出对光波长的上转换。 过渡金属掺杂材料包括能量转移促进过渡金属掺杂剂和(不一定是不同的)发射极过渡金属掺杂剂,其中促进过渡金属掺杂剂的能量转移的吸收光谱与光学天线的发射光谱重叠。 光学上变频纳米材料具有至少一个范围小于150nm的线性尺寸(例如,宽度或厚度)。

    Photoactive taggant materials comprising semiconductor nanoparticles and lanthanide ions
    4.
    发明授权
    Photoactive taggant materials comprising semiconductor nanoparticles and lanthanide ions 有权
    包含半导体纳米颗粒和镧系元素离子的光敏标签物质

    公开(公告)号:US07919018B2

    公开(公告)日:2011-04-05

    申请号:US12290643

    申请日:2008-10-30

    CPC分类号: C09D11/322 C09D11/38

    摘要: This invention provides, in one aspect, a procedure to use optically transparent nanocrystalline quantum dots to absorb UV light. This absorption process leads to an energy transfer to a chemically bound and chelated lanthanide ion that may emit light in either the visible spectrum (400-700 nm) or in the near infrared (700-1600 nm). This invention also provides methods for the use of these taggant materials in inks and aerosols used to disperse the taggant.

    摘要翻译: 本发明在一个方面提供使用光学透明的纳米晶体量子点吸收紫外光的方法。 这种吸收过程导致能够转移到可发射可见光谱(400-700nm)或近红外(700-1600nm)的光的化学结合和螯合的镧系元素离子。 本发明还提供了在用于分散标签剂的油墨和气溶胶中使用这些标记剂材料的方法。

    Photoactive taggant materials comprising semiconductor nanoparticles and lanthanide ions
    6.
    发明申请
    Photoactive taggant materials comprising semiconductor nanoparticles and lanthanide ions 有权
    包含半导体纳米颗粒和镧系元素离子的光敏标签物质

    公开(公告)号:US20090224218A1

    公开(公告)日:2009-09-10

    申请号:US12290643

    申请日:2008-10-30

    IPC分类号: F21V9/04 F21V9/00

    CPC分类号: C09D11/322 C09D11/38

    摘要: This invention provides, in one aspect, a procedure to use optically transparent nanocrystalline quantum dots to absorb UV light. This absorption process leads to an energy transfer to a chemically bound and chelated lanthanide ion that may emit light in either the visible spectrum (400-700 nm) or in the near infrared (700-1600 nm). This invention also provides methods for the use of these taggant materials in inks and aerosols used to disperse the taggant.

    摘要翻译: 本发明在一个方面提供使用光学透明的纳米晶体量子点吸收紫外光的方法。 这种吸收过程导致能够转移到可发射可见光谱(400-700nm)或近红外(700-1600nm)的光的化学结合和螯合的镧系元素离子。 本发明还提供了在用于分散标签剂的油墨和气溶胶中使用这些标记剂材料的方法。

    Streak image sensor and method of operating
    7.
    发明授权
    Streak image sensor and method of operating 有权
    条纹图像传感器和操作方法

    公开(公告)号:US08207484B1

    公开(公告)日:2012-06-26

    申请号:US12327070

    申请日:2008-12-03

    IPC分类号: G01C21/02 G01C3/08 G01N21/86

    CPC分类号: G01C13/00 Y02A90/32

    摘要: A LIDAR system that includes a streak image sensor having multiple sensor elements for receiving optical return signals from portions of a spatial region within their respective instantaneous fields of view is operated by periodically sampling and storing electrical signals generated by the sensor elements respectively, and initiating the periodic sampling of the electrical signals of each sensor individually and independently by reference to a feature of that sensor's electrical signal that represents a boundary between materials with different optical properties.

    摘要翻译: 包括具有多个传感器元件的条纹图像传感器的激光雷达系统通过周期性地对由传感器元件产生的电信号进行周期性采样和存储来进行操作,该传感器元件用于从其各自的瞬时视场内的部分接收光返回信号, 通过参考表示具有不同光学性质的材料之间的边界的该传感器的电信号的特征,单独和独立地对每个传感器的电信号进行周期性采样。

    Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same
    8.
    发明申请
    Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same 有权
    具有用于增强性能的纳米颗粒偶极子的光伏器件及其制造方法

    公开(公告)号:US20090211629A1

    公开(公告)日:2009-08-27

    申请号:US12290660

    申请日:2008-10-30

    IPC分类号: H01L31/0256 H01L31/18

    摘要: A photovoltaic device has nanoparticles sandwiched between a conductive substrate and a charge selective transport layer. Each of the nanoparticles has a ligand shell attached to the nanoparticle core. A first type of ligand is electron rich and attached to one hemisphere of the nanoparticle core, while a second type of ligand is electron poor and attached to an opposite hemisphere of the core. Consequently, the ligand shell induces an electric field within the nanoparticle, enhancing the photovoltaic effect. The arrangement of ligands types on different sides of the nanoparticle is obtained by a process involving ligand substitution after adhering the nanoparticles to the conductive substrate.

    摘要翻译: 光电器件具有夹在导电衬底和电荷选择性传输层之间的纳米颗粒。 每个纳米颗粒具有连接到纳米颗粒核心的配体壳。 第一种类型的配体是富电子的,并且附着在纳米颗粒核心的一个半球上,而第二类配体是电子不良并且附着到核心的相对半球。 因此,配体壳诱导纳米颗粒内的电场,增强光伏效应。 在纳米颗粒的不同侧上的配体类型的排列通过在将纳米颗粒粘附到导电基底上之后涉及配体取代的方法获得。

    Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same
    10.
    发明授权
    Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same 有权
    具有用于增强性能的纳米颗粒偶极子的光伏器件及其制造方法

    公开(公告)号:US07994421B2

    公开(公告)日:2011-08-09

    申请号:US12290660

    申请日:2008-10-30

    IPC分类号: H01L31/00 H01L21/00

    摘要: A photovoltaic device has nanoparticles sandwiched between a conductive substrate and a charge selective transport layer. Each of the nanoparticles has a ligand shell attached to the nanoparticle core. A first type of ligand is electron rich and attached to one hemisphere of the nanoparticle core, while a second type of ligand is electron poor and attached to an opposite hemisphere of the core. Consequently, the ligand shell induces an electric field within the nanoparticle, enhancing the photovoltaic effect. The arrangement of ligands types on different sides of the nanoparticle is obtained by a process involving ligand substitution after adhering the nanoparticles to the conductive substrate.

    摘要翻译: 光电器件具有夹在导电衬底和电荷选择性传输层之间的纳米颗粒。 每个纳米颗粒具有连接到纳米颗粒核心的配体壳。 第一种类型的配体是富电子的,并且附着在纳米颗粒核心的一个半球上,而第二类配体是电子不良并且附着到核心的相对半球。 因此,配体壳诱导纳米颗粒内的电场,增强光伏效应。 在纳米颗粒的不同侧上的配体类型的排列通过在将纳米颗粒粘附到导电基底上之后涉及配体取代的方法获得。