Abstract:
A tubular cutter is run in on slickline. It features onboard power to selectively actuate an anchor and to initiate a tubular cutting operation with a cutter that is extendable and rotatable on its axis and the axis of the tool that carries an on board power supply.
Abstract:
A tubular cutter is run in on slickline. It features onboard power to selectively actuate an anchor and to initiate a tubular cutting operation with a cutter that is extendable and rotatable on its axis and the axis of the tool that carries an on board power supply.
Abstract:
Disclosed herein is a method of installing an elastomeric element onto a tubular. The method includes, positioning the elastomeric element onto a radially expandable member, radially expanding the radially expandable member and the elastomeric element installed thereon, positioning a tubular coaxially with the radially expandable member, and axially urging the elastomeric element off the radially expandable member thereby allowing the elastomeric element to be positioned coaxially about an outer perimetrical surface of the tubular.
Abstract:
Disclosed herein is a method of installing an elastomeric element onto a tubular. The method includes, positioning the elastomeric element onto a radially expandable member, radially expanding the radially expandable member and the elastomeric element installed thereon, positioning a tubular coaxially with the radially expandable member, and axially urging the elastomeric element off the radially expandable member thereby allowing the elastomeric element to be positioned coaxially about an outer perimetrical surface of the tubular.
Abstract:
A shifting tool is run on slickline and has an on board power supply. Rotary motion of the motor is converted to linear motion of the shifting tool using a ball screw device. The grip is obtained with longitudinal motion of a grip linkage and an on board jar then can do the shifting. Alternatively a linear motor can be used to extend and retract the grip assembly and shift using the jar tool. Optionally the tool can be anchored and linear motion from the on board power source operating a motor can do the shifting.
Abstract:
In one aspect, a method of method of performing a wellbore operation is disclosed that in one embodiment may include: providing a device that includes a non-explosive energetic material configured to disintegrate when subjected to a selected energy; placing the device at a selected location in the wellbore to perform a selected function; and subjecting the device to the selected energy to disintegrate the device in the wellbore after the device has performed the selected function. In another aspect an apparatus for use in a wellbore is disclosed that in one embodiment may include a device placed in the wellbore at a selected location, wherein the device includes a non-explosive energetic material configured to disintegrate when subjected to a selected energy, and a source of the selected energy configured to subject the device to the selected energy in the wellbore to disintegrate the device.
Abstract:
A downhole tubular scraper is run in on slickline with an on board power supply. It features counter-rotating scrapers without an anchor in one embodiment or an anchor with single rotating scrapers. The scraper is selectively operated to conserve power in the power supply. A drive system uses a single driver to obtain counter-rotating motion in the scrapers.
Abstract:
A wellbore cleanup tool is run on slickline. It has an onboard power supply and circulation pump. Inlet flow is at the lower end into an inlet pipe that keeps up fluid velocity. The inlet pipe opens to a surrounding annular volume for sand containment and the fluid continues through a screen and into the pump for eventual exhaust back into the water in the wellbore. A modular structure is envisioned to add debris carrying capacity. Various ways to energize the device are possible. Other tools run on slickline are described such as a cutter, a scraper and a shifting tool.
Abstract:
A wellbore cleanup tool is run on slickline. It has an onboard power supply and circulation pump. Inlet flow is at the lower end into an inlet pipe that keeps up fluid velocity. The inlet pipe opens to a surrounding annular volume for sand containment and the fluid continues through a screen and into the pump for eventual exhaust back into the water in the wellbore. A modular structure is envisioned to add debris carrying capacity. Various ways to energize the device are possible. Other tools run on slickline are described such as a cutter, a scraper and a shifting tool.
Abstract:
A shifting tool is run on slickline and has an on board power supply. Rotary motion of the motor is converted to linear motion of the shifting tool using a ball screw device. The grip is obtained with longitudinal motion of a grip linkage and an on board jar then can do the shifting. Alternatively a linear motor can be used to extend and retract the grip assembly and shift using the jar tool. Optionally the tool can be anchored and linear motion from the on board power source operating a motor can do the shifting.