摘要:
A electronic engine control (EEC) module executes a generic neural network processing program to perform one or more neural network control funtions. Each neural network funtion is defined by a unitary data structure which defines the network architecture, including the number of node layers, the number of nodes per layer, and the interconnections between nodes. In addition, the data structure holds weight values which determine the manner in which network signals are combined. The network definition data structures are created by a network training system which utilizes an external training processor which employs gradient methods to derive network weight values in accordance with a cost function which quantitatively defines system objectives and an identification network which is pretrained to provide gradient signals representative the behavior of the physical plant. The training processor executes training cycles asynchronously with the operation of the EEC module in a representative test vehicle.
摘要:
A method is disclosed for developing a sheet metal forming process prediction method which is based on the application of an anisotropic hardening rule of plasticity in the mathematic theory.