Abstract:
A method for operating an injection valve by determining an opening or closing time of the injection valve based on a sensor signal. The method includes: providing an evaluation point time series by sampling a sensor signal of a sensor of the injection valve; using a non-linear data-based first sub-model to obtain a first output vector based on the evaluation point time series, wherein each element of the first output vector is associated with a specific time; using a linear, data-based second sub-model to obtain a second output vector based on the evaluation point time series, wherein each element of the second output vector is associated with a specific time; limiting the time determined by the first output vector depending on the second output vector in order to obtain the opening or closing time.
Abstract:
An engine control device includes a model that, based on engine operating condition and first-type operation amount, reproduces at least one index from among various indexes of combustion state of engine, and a processor that executes a process including deciding on second-type operation amount, by optimization using the model so as to treat at least one of the indexes, which are reproduced by the model, as estimated value of control amount, and ensure that the estimated value of the control amount follows control target value, associating the second-type operation amount with the control target value and the engine operating condition, rewriting a learning control table in which operation amount corresponding to the control target value and the engine operating condition is registered, and calculating operation amount according to the learning control table based on the control target value and the engine operating condition.
Abstract:
Computational models and calculations relating to trapped and scavenged air per cylinder (APC) improve scavenging and non-scavenging operational modes of internal combustion engines as well as the transition there-between. Data from sensors which include engine speed, manifold air pressure, barometric pressure, crankshaft position, and valve state are provided to a pair of artificial neural networks. A first neural network utilizes this data to calculate the nominal volume of gas, i.e., air trapped in the cylinder. A second neural network utilizes this data to calculate the trapping ratio. The output of the first network is utilized with the ideal gas law to calculate the actual mass of trapped APC. The actual mass of trapped APC is also divided by the trapping ratio calculated by the second network to determine the total APC and is further utilized to calculate the scavenged APC by subtracting the trapped APC from the total APC.
Abstract:
A method for a model-based determination of a cylinder charge of a combustion chamber of an internal combustion engine as well as an internal combustion engine in a computer program product. The method utilizes a neuronal network having at least three input values. A pressure quotient is used as one of the input values. The pressure quotient is determined as the ratio of the pressure of the air set by the engine over the operating pressure of the engine. The pressure of the air set by the internal combustion engine may be determined by utilizing a measured value, a computed value, and/or a value determined from a characteristic map. It is also possible to include a combination of these in the pressure quotient.
Abstract:
A system according to the principles of the present disclosure includes a first burn duration module and a spark control module. The first burn duration module determines a first duration of at least a portion of a fuel burn within a cylinder of an engine from a first time when a first predetermined percentage of a mass of fuel within the cylinder is burned to a second time when a second predetermined percentage of the fuel mass is burned. The spark control module controls a spark plug to adjust spark timing of the cylinder based on the first burn duration.
Abstract:
A system and approach for development of setpoints for a controller of an engine or powertrain. The controller may be parametrized as a function of setpoints to provide performance variables that are considered acceptable by a user or operator for normal operating conditions of the engine or powertrain. With each iteration of the setpoints, the controller may be reconfigured to provide more stable and dynamically performant control of the engine or powertrain. The present system and approach may automate a previously labor intensive approach for designing setpoints for the controller.
Abstract:
An EGR control apparatus for an internal combustion engine, which is capable of accurately controlling an inert gas amount and an inert gas ratio of two types of EGR gas supplied to cylinders of the engine via two paths different from each other, thereby making it possible to ensure a stable combustion state and reduced exhaust emissions. The EGR control apparatus includes a low-pressure EGR device, a high-pressure EGR device, and an ECU. The ECU calculates a target low-pressure opening, calculates an estimated value of an in-cylinder low-pressure inert gas flow rate, which is the estimated value of an inert gas amount included in low-pressure EGR gas supplied to the cylinders via an intake passage, calculates a target high-pressure opening using the estimated value, and controls low-pressure and high-pressure EGR control valves, using the target low-pressure opening and the target high-pressure opening.
Abstract:
A control system for an internal combustion engine is disclosed. In the control system, an engine state parameter is calculated using a self-organizing map for calculating a predetermined output parameter according to at least one engine operating parameter which indicates an operating condition of said engine. The engine state parameter indicates an engine state which is relevant to the predetermined output parameter.
Abstract:
The present invention relates to a method for adjusting a mass flow of an exhaust gas return of an internal combustion engine, taking into consideration a NOx behavior, wherein a controlling system provides a coupling of a virtual NOx determination with a real NOx control. Furthermore, an internal combustion engine with appropriate controlling means is proposed.
Abstract:
A Method for estimating NOx creation in a combustion process of a four-stroke internal combustion engine includes monitoring engine sensor inputs, modeling parameters descriptive of said combustion process based upon said engine sensor inputs, and estimating NOx creation with an artificial neural network based upon said parameters.