Abstract:
An LPV/MPC engine control system is disclosed that includes an engine control unit connected to multiple sensors. The engine control unit receives, from the sensors, signals indicative of desired engine torque and engine torque output, and determines, from these signals, optimal engine control commands using a piecewise LPV/MPC routine. This routine includes: determining a nonlinear and a linear system model for the engine assembly, minimizing a control cost function in a receding horizon for the linear system model, determining system responses for the nonlinear and linear system models, determining if a norm of an error function between the system responses is smaller than a calibrated threshold, and if the norm is smaller than the predetermined threshold, applying the linearized system model in a next sampling time for a next receding horizon to determine the optimal control command. Once determined, the optimal control command is output to the engine assembly.
Abstract:
Various methods and systems are provided for indexing an injector map and subsequently controlling fuel injection to an engine. In one embodiment, a non-transitory computer readable storage medium with memory comprises fuel injector activation data indexed in the memory according to an input parameter, instructions for determining a modified pressure value based on a determined pressure and a modified pressure function, and instructions for generating a fuel injector activation output by interpolating among the indexed fuel injector activation data with the modified pressure value as the input parameter.
Abstract:
A method of controlling the combustion of a spark-ignition engine having application to gasoline engines is disclosed. An engine control system controls actuators so that the values of physical parameters linked with the combustion of a mixture of gas and fuel in a combustion chamber are equal to their setpoint values, to optimize the combustion. A setpoint value is determined for an ignition crank angle of the fuel mixture which is then corrected before the physical parameters reach their setpoint values. A correction to be applied to this ignition angle setpoint value is calculated so that the crank angle CAy is equal to its setpoint value. Finally, the engine control system controls the ignition of the mixture in the combustion chamber when the crank angle is equal to the corrected setpoint value to optimize combustion.
Abstract:
A system and method for modeling and controlling an internal combustion engine having multiple combustion modes. The in-cylinder condition is controlled by gas handling devices through both a feed forward and feedback path. The latter path includes an “in-cylinder condition estimator” and a non-linear controller. Fueling parameters are controlled by engine speed, desired torque, and input from the in-cylinder condition estimator.
Abstract:
An electronic engine control (EEC) module executes both open loop and closed loop neural network processes to control the air/fuel mixture ratio of a vehicle engine to hold the fuel mixture at stoichiometry. The open loop neural network provides transient air/fuel control to provide a base stoichiometric air/fuel mixture ratio signal in response to throttle position under current engine speed and load conditions. The base air/fuel mixture ratio signal from the open loop network is additively combined with a closed loop trimming signal which varies the air/fuel mixture ratio in response to variations in the sensed exhaust gas oxygen level. Each neural network function is defined by a unitary data structure which defines the network architecture, including the number of node layers, the number of nodes per layer, and the interconnections between nodes. In addition, the data structure holds weight values which determine the manner in which network signals are combined. The network definition data structures are created by a network training system which utilizes an external training processor which employs gradient methods to derive network weight values in accordance with a cost function which quantitatively defines system objectives and an identification network which is pretrained to provide gradient signals representative of the behavior of the physical plant. The training processor executes training cycles asynchronously with the operation of the EEC module in a representative test vehicle.
Abstract:
An engine speed controlling apparatus for an internal combustion engine for controlling the engine speed of an internal combustion engine which has a mechanism for governing the engine speed and in which a manipulated variable of the governing mechanism and torque are in non-linear relationships. Although a real manipulated variable and the torque are in non-linear relationships, a virtual manipulated variable in which an actual engine speed becomes a targeted engine speed is calculated assuming those relationships as being linear. The virtual manipulated variable is converted to the real manipulated variable by using the actual non-linear relationships between the real manipulated variable and the torque, and the governor is controlled on the basis of the converted real manipulated variable.
Abstract:
A monitoring system and method for detecting clogging through fouling of an air filter (3) of an internal combustion engine (5) comprising a differential pressure sensor means (7) for determining a differential pressure between an ambient environment and a position directly downstream of the air inlet filter. The system further comprising at least one exhaust flow sensor means (9) for determining the exhaust flow, and a controller (13) which is communicatively connected to each of the sensor means for processing information therefrom. The controller is arranged for determining a first filter resistance coefficient based on, at least, a measurement of the differential pressure, and the exhaust flow. The system is arranged for, using the controller, to calculate a second filter coefficient based on the historic evolution of the first filter coefficient, the controller further arranged for comparing the second filter coefficient to a boundary value, and generating a clogging alarm signal when the second filter coefficient exceeds said boundary value.
Abstract:
A port and direct fuel injection (PDI) fuel delivery system for a vehicle having an engine configured to selectively operate between a port fuel injection (PFI) mode, a gasoline direct injection (GDI) mode, and a PDI mode includes a PFI system including plurality of PFI injectors, and a GDI system including a plurality of GDI injectors. The PFI and GDI systems are configured to provide various split-ratios of fuel mass injection to the engine based on a particular engine operating condition. A controller is programmed to identify a known first long term fuel trim (LTFT) for a first split-ratio, identify a known second LTFT for a second split-ratio, generate a linear equation based on the known first and second LTFTs, and determine an unknown third LTFT for a third split-ratio by utilizing the linear equation to facilitate reducing fueling errors and emissions.
Abstract:
An LPV/MPC engine control system is disclosed that includes an engine control unit connected to multiple sensors. The engine control unit receives, from the sensors, signals indicative of desired engine torque and engine torque output, and determines, from these signals, optimal engine control commands using a piecewise LPV/MPC routine. This routine includes: determining a nonlinear and a linear system model for the engine assembly, minimizing a control cost function in a receding horizon for the linear system model, determining system responses for the nonlinear and linear system models, determining if a norm of an error function between the system responses is smaller than a calibrated threshold, and if the norm is smaller than the predetermined threshold, applying the linearized system model in a next sampling time for a next receding horizon to determine the optimal control command. Once determined, the optimal control command is output to the engine assembly.
Abstract:
A heat generation rate waveform of an internal combustion engine. A period from spark generated by an ignition plug to ignition of an air-fuel mixture is defined as an ignition delay period τ that is one of characteristic values of the heat generation rate waveform. When the ignition time FA of the air-fuel mixture is on the advance side of a compression top dead center of a piston (BTDC), the ignition delay period τ is estimated based on an in-cylinder fuel density ρfuel@SA at the spark time SA, and when the ignition time FA of the air-fuel mixture is on the delay side of the compression top dead center of the piston (ATDC), the ignition delay period τ is estimated based on an in-cylinder fuel density ρfuel@FA at the ignition time FA. Thus, the heat generation rate waveform is produced using the estimated ignition delay period τ.