Abstract:
A valve actuator for controlling a valve is provided. The valve actuator includes a torque transfer arrangement interposed between a return spring and a drive gear, the drive gear being biased by loading provided by the return spring. A drive coupling is interposed between the drive gear and the return spring and transfers load of the return spring to the drive gear. A torque transfer arrangement between the drive gear and drive coupling permits limited relative angular movement of the drive coupling relative to the drive gear.
Abstract:
A valve actuator with manual lock is provided. The valve actuator with manual lock includes a locking button arrangement that is operably coupled to a shaft extending along an axis of rotation of a drive train. The locking button arrangement is selectively engageable with a housing of the valve actuator to lock the drive train in a selected orientation.
Abstract:
An actuator including a motor, clutch, gear train, solenoid, clock spring, and air brake is provided. The motor is configured to drive a control valve. The clutch is operably coupled to the motor and configured to prevent the motor from transferring more than a predetermined amount of torque. The gear train is operably coupled to the clutch and configured to receive the predetermined amount of torque from the motor. The solenoid is operably coupled to the gear train and configured to disengage one of the gears in the gear train from adjacent gears. The clock spring is operably coupled to another of the gears in the gear train, configured to store mechanical energy supplied by the motor, and configured to drive the control valve. The air brake is operably coupled to the gear train and configured to dissipate a portion of the mechanical energy released by the clock spring.
Abstract:
The piston of a reciprocating hydraulic actuator carries a pump which is driven by an electric motor and which supplies oil from the low pressure chamber of a cylinder to the high pressure chamber thereof in order to advance the piston. An exhaust valve in the piston is normally held in a closed position by magnetic force created by energizing a coil and, when closed, enables pressurization of the high pressure chamber of the cylinder. When a second coil is energized, the magnetic field of the first coil is negated and the valve is opened by a spring to permit oil to exhaust from the high pressure chamber to the low pressure chamber and permit a second spring to retract the piston. If both the pump motor and the second coil are de-energized, the first coil keeps the valve closed and causes the piston to remain in a commanded position. The actuator may be controlled by a floating single pole, double throw switch and its piston is automatically shifted to its fully retracted position by the second spring if electrical power to the actuator is lost.
Abstract:
A valve assembly including a valve actuator and valve is provided. The valve actuator includes a mechanical hold arrangement configured to allow manually setting the position of the valve actuator and its drive gear and to oppose any loading provided by a return spring biasing the valve actuator and drive gear out of the set position. The valve actuator includes a spring lever and a recess in which the spring lever is secured to lock the position of the valve actuator and drive gear when the electric motor of the valve actuator is de-energized. The valve actuator can be reconfigured to provide mechanical holding for manually setting the orientation of the drive gear when a return spring load is provided in either a clockwise or counter-clockwise direction.
Abstract:
A valve assembly including a valve actuator and valve is provided. The valve actuator includes a mechanical hold arrangement configured to allow manually setting the position of the valve actuator and its drive gear and to oppose any loading provided by a return spring biasing the valve actuator and drive gear out of the set position. The valve actuator includes a spring lever and a recess in which the spring lever is secured to lock the position of the valve actuator and drive gear when the electric motor of the valve actuator is de-energized. The valve actuator can be reconfigured to provide mechanical holding for manually setting the orientation of the drive gear when a return spring load is provided in either a clockwise or counter-clockwise direction.
Abstract:
A method and apparatus are provided for operatively connecting a controller to an external circuit, by connecting the external circuit to a circuit card mounted for slidable movement into operative engagement with a connection element disposed on a side surface of the controller. The circuit card is slidably supported in a receiver adapted for positioning the controller with respect to the circuit card.
Abstract:
A manual override mechanism is presented for a motor-driven linear actuator that allows the output rack and pinion of the actuator to be manually positioned. Once positioned, the output may be locked by a locking mechanism to prevent this output from translating to its quiescent position. When incorporated in a spring-return linear actuator, the manual override may be used to apply a preload on the spring before the driven device is connected. When the actuator is used to drive a valve or damper, the preload applies a positive closing force on the valve or damper in its zero position to ensure a tight closure of the valve or damper. The locking mechanism engages the gear train and opposes the closing force applied by the spring return of the actuator. To disengage the locking mechanism automatically, the motor applies a forward kick to the gear train. Manual disengagement is also provided.
Abstract:
The output shaft of a rotary actuator is rotated in one direction by an electric motor and is returned in the opposite direction by a spring which is wound during driving of the shaft by the motor. The motor drives the output shaft and winds the return spring by way of a speed-reducing, torque amplifying gear train. To enable the use of a lighter return spring and the use of a gear train effecting greater torque amplification from the motor to the output shaft, intermediate gears in the drive train apply winding torque to the return spring differentially of the drive torque applied to the output shaft.
Abstract:
A reversible electric motor supported on a sub-base acts through a reduction gear train to rotate an output shaft supported by a main mounting base, the sub-base being capable of turning through a limited range relative to the main base about the axis of the output shaft. When the output shaft encounters excessive resistance torque in either direction, the sub-base automatically turns relative to the main base and effects the opening of switch means to de-energize the motor.