摘要:
A method for decoding signals with encoded symbols over a symbol interval that modulate a carrier. The method includes phase locking the signal to be decoded to obtain a phase-locked signal. The value assumed by the phase-locked signal on at least one subinterval in each symbol interval is detected. The method continues with attributing to the decoded symbol corresponding to each symbol interval a value that is a function of the value detected the subinterval. The subinterval in question can be a single subinterval located at the end of the symbol interval. Alternatively, the value assumed by the phase-locked signal on a plurality of subintervals in each symbol interval is detected, and a respective majority value of said phase-locked signal within said plurality of subintervals is identified. A value determined on the basis of the majority value is attributed to the decoded symbol corresponding to each symbol interval.
摘要:
Once slot synchronization has been obtained in a first step, during a second step there is acquired, by means of correlation of the received signal (r) with the synchronization codes, the information corresponding to the codegroup and to the fine slot synchronization. The synchronization codes are split into codesets. In a first step, a synchronization code identifying a corresponding codeset (CS) is identified by means of correlation and search for the maximum value of correlation energy. In a second step, the received signal (r) is correlated with the remaining codes belonging to the codeset identified. The information thus obtained, which corresponds to all the synchronization codes comprised in the codeset identified, is used for obtaining frame synchronization and codegroup identification. Preferential application is in mobile communication systems based upon standards, such as UMTS, CDMA2000, IS95 or WBCDMA.
摘要:
A method for decoding signals with encoded symbols over a symbol interval that modulate a carrier. The method includes phase locking the signal to be decoded to obtain a phase-locked signal. The value assumed by the phase-locked signal on at least one subinterval in each symbol interval is detected. The method continues with attributing to the decoded symbol corresponding to each symbol interval a value that is a function of the value detected the subinterval. The subinterval in question can be a single subinterval located at the end of the symbol interval. Alternatively, the value assumed by the phase-locked signal on a plurality of subintervals in each symbol interval is detected, and a respective majority value of said phase-locked signal within said plurality of subintervals is identified. A value determined on the basis of the majority value is attributed to the decoded symbol corresponding to each symbol interval.
摘要:
In order to perform, according to a received signal (r), a channel-estimation procedure and a cell-search procedure in cellular communication systems, there are executed at least one first operation of correlation of said received signal (r) with secondary synchronization codes (SSC) and a second operation of correlation of said received signal (r) with known midamble codes (mid, MPL, MPS), whilst said channel-estimation procedure comprises a third operation of correlation of at least part of said received signal (r) with known midamble codes (mid, MPL, MPS), said first, second, and third correlation operation being executed by sending at least part (emidamble) of said received signal (r) to an input of a correlation bank. There are envisaged the operations of: sending, in a first time interval, the received signal (r) to said correlation bank for executing the first operation of correlation of said received signal (r) with secondary synchronization codes (SSC); sending, in a second time interval, at least part (emidamble) of said received signal (r) to said same correlation bank for executing the second operation of correlation of said received signal (r) with known midamble codes (mid, MPL, MPS); sending, in a second time interval, the received signal (r) to said same correlation bank for executing the third operation of correlation of at least part (emidamble) of said received signal (r) with known midamble codes (mid, MPL, MPS). Possible application is in mobile communication systems based upon standards such as UMTS, CDMA2000, IS95 or WBCDMA.
摘要:
In order to perform, according to a received signal (r), a channel-estimation procedure and a cell-search procedure in cellular communication systems, there are executed at least one first operation of correlation of said received signal (r) with secondary synchronization codes (SSC) and a second operation of correlation of said received signal (r) with known midamble codes (mid, MPL, MPS), whilst said channel-estimation procedure comprises a third operation of correlation of at least part of said received signal (r) with known midamble codes (mid, MPL, MPS), said first, second, and third correlation operation being executed by sending at least part (emidamble) of said received signal (r) to an input of a correlation bank. There are envisaged the operations of: sending, in a first time interval, the received signal (r) to said correlation bank for executing the first operation of correlation of said received signal (r) with secondary synchronization codes (SSC); sending, in a second time interval, at least part (emidamble) of said received signal (r) to said same correlation bank for executing the second operation of correlation of said received signal (r) with known midamble codes (mid, MPL, MPS); sending, in a second time interval, the received signal (r) to said same correlation bank for executing the third operation of correlation of at least part (emidamble) of said received signal (r) with known midamble codes (mid, MPL, MPS). Possible application is in mobile communication systems based upon standards such as UMTS, CDMA2000, IS95 or WBCDMA.
摘要:
To execute the cell-search procedure in a cellular communication system (such as a system based upon the 3GPP TDD standard), there are available identification codes for the second step (slot synchronization) and for the third step (identification of the scrambling codes). The identification codes are identified by a process of correlation with the received signal and are used for obtaining from a correspondence table the parameters for the execution of the second step (CD) or of the third step (SCR). The correspondence table is stored in a reduced form by the identification, according to rules of symmetry and redundancy, of subtables designed to generate the entire table by appropriate combination operations. The search procedure in the correspondence table thus reduced is conveniently modified by the introduction of the combination operations. A preferential application is in mobile communication systems based upon standards such as UMTS, CDMA2000, IS95 or WBCDMA.
摘要:
In a first step, slot synchronization may be obtained by setting in correlation the received signal with a primary sequence, which represents the primary channel, and storing the received signal. During a second step, the correlator may be re-used for correlating the received signal with a secondary sequence corresponding to the secondary synchronization codes. The correlator may include a first filter and a second filter connected in series, which receive a first secondary sequence and a second secondary sequence, which may include Golay sequences. Architectures of parallel and serial types, as well as architectures designed for reusing further circuit parts are also disclosed. The invention is particularly applicable in mobile communication systems based upon standards such as UMTS, CDMA2000, IS95, and WBCDMA.
摘要:
To execute the cell-search procedure in a cellular communication system (such as a system based upon the 3GPP TDD standard), there are available identification codes for the second step (slot synchronization) and for the third step (identification of the scrambling codes). The identification codes are identified by a process of correlation with the received signal and are used for obtaining from a correspondence table the parameters for the execution of the second step (CD) or of the third step (SCR). The correspondence table is stored in a reduced form by the identification, according to rules of symmetry and redundancy, of subtables designed to generate the entire table by appropriate combination operations. The search procedure in the correspondence table thus reduced is conveniently modified by the introduction of the combination operations. A preferential application is in mobile communication systems based upon standards such as UMTS, CDMA2000, IS95 or WBCDMA.
摘要:
To obtain frame synchronization and identify the cell codegroup in a cellular communication system (such as a system based upon the standard 3GPP FDD), there are available the synchronization codes organized in chips or letters transmitted at the beginning of respective slots. Slot synchronization is obtained previously in a first step of the operation of cell search. During a second step, there are acquired, by means of correlation or fast Hadamard transform, the energy values corresponding to the respective individual letters with reference to the possible starting positions of the corresponding frame within the respective slot. Operating in a serial way at the end of acquisition of the aforesaid energy values of the individual letters, or else operating in parallel, the energies of the corresponding words are determined. Of these energies only the maximum word-energy value and the information for the corresponding starting position are stored in a memory structure. Said maximum value and said starting position identify, respectively, the cell codes and the frame synchronization sought. One application is in mobile communication systems based upon standards such as UMTS, CDMA2000, IS95, or WBCDMA.
摘要:
Described herein is a method for parallel generating Walsh-Hadamard (WH) channelization codes and Orthogonal Variable Spreading Factor (OVSF) channelization codes, which are channelization codes formed by a plurality of strings of antipodal digits, each having a given length L and being identifiable by respective indices I formed by strings of binary digits, each having a given length N equal to the logarithm in base two of the length L of the channelization codes, the antipodal digits of the channelization codes assuming the values +1 and −1 and the binary digits of said indices I assuming the values 0 and 1. The method according to the invention enables determination of the antipodal digits of the channelization codes according to the binary digits of the corresponding indices I, implementing specific EXOR logic operations, by means of which there are first generated intermediate binary digits, which are then encoded with the antipodal digits of the channelization codes using an encoding criterion according to which the intermediate binary digits 0 and 1 can be encoded, respectively, with the antipodal digits −1 and +1 or else with the antipodal digits +1 and −1 according to the type of binary encoding chosen a priori for the antipodal digits themselves.