摘要:
Atmospheric and/or vacuum resid fractions of a high solvency dispersive power (HSDP) crude oil are added to a blend of crude oil to prevent fouling of crude oil refinery equipment and to perform on-line cleaning of fouled refinery equipment. The HSDP resid fractions dissolve asphaltene precipitates and maintain suspension of inorganic particulates before coking affects heat exchange surfaces.
摘要:
A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible and/or near-incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. HSDP co-blending for fouling mitigation and on-line cleaning can be affected using different concentrations of top-performing and moderate-performing HSDP crude oils.
摘要:
Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects includes a base non-HSDP crude oil and an effective amount of resins isolated from a high solvency dispersive power (HSDP) crude oil, and method of making same. Also, methods of using such non-HSDP crude oil for on-line cleaning of a fouled crude oil refinery component, for reducing fouling in a crude oil refinery component, and in a system capable of experiencing fouling conditions associated with particulate or asphaltene fouling.
摘要:
Method of isolating active resins from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and combining the DAO fraction and the second asphaltenes fraction to form a de-resinated crude. Method of using components isolated from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and selecting at least one of the DAO fraction, the active resins, or the second asphaltenes fraction for use in a refinery process.
摘要:
A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible and/or near-incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. HSDP co-blending for fouling mitigation and on-line cleaning can be affected using different concentrations of top-performing and moderate-performing HSDP crude oils.
摘要:
Performance of equipment, such as a desalter, in a refinery is monitored in real-time and on-line to minimize fouling of downstream equipment. Using an instrument to measure particles and droplets in-process allows monitoring of the various operations to optimize performance. Such measurement can also be used during crude oil blending to detect asphaltene precipitates that can cause fouling and can be used for monitoring other fouling streams.
摘要:
A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible and/or near-incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. HSDP co-blending for fouling mitigation and on-line cleaning can be affected using different concentrations of top-performing and moderate-performing HSDP crude oils.
摘要:
Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects includes a base non-HSDP crude oil and an effective amount of resins isolated from a high solvency dispersive power (HSDP) crude oil, and method of making same. Also, methods of using such non-HSDP crude oil for on-line cleaning of a fouled crude oil refinery component, for reducing fouling in a crude oil refinery component, and in a system capable of experiencing fouling conditions associated with particulate or asphaltene fouling.
摘要:
Atmospheric and/or vacuum resid fractions of a high solvency dispersive power (HSDP) crude oil are added to a blend of crude oil to prevent fouling of crude oil refinery equipment and to perform on-line cleaning of fouled refinery equipment. The HSDP resid fractions dissolve asphaltene precipitates and maintain suspension of inorganic particulates before coking affects heat exchange surfaces.
摘要:
Performance of equipment, such as a desalter, in a refinery is monitored in real-time and on-line to minimize fouling of downstream equipment. Using an instrument to measure particles and droplets in-process allows monitoring of the various operations to optimize performance. Such measurement can also be used during crude oil blending to detect asphaltene precipitates that can cause fouling and can be used for monitoring other fouling streams.