Use of fiber optics in deviated flows

    公开(公告)号:US20060065393A1

    公开(公告)日:2006-03-30

    申请号:US11280532

    申请日:2005-11-17

    IPC分类号: E21B47/00

    摘要: A system to determine the mixture of fluids in the deviated section of a wellbore comprising at least one distributed temperature sensor adapted to measure the temperature profile along at least two levels of a vertical axis of the deviated section. Each distributed temperature sensor can be a fiber optic line functionally connected to a light source that may utilize optical time domain reflectometry to measure the temperature profile along the length of the fiber line. The temperature profiles at different positions along the vertical axis of the deviated wellbore enables the determination of the cross-sectional distribution of fluids flowing along the deviated section. Together with the fluid velocity of each of the fluids flowing along the deviated section, the cross-sectional fluid distribution enables the calculation of the flow rates of each of the fluids. The system may also be used in conjunction with a pipeline, such as a subsea pipeline, to determine the flow rates of fluids flowing therethrough.

    MONITORING OF THE POSITION OF A PIPE INSPECTION TOOL IN A PIPELINE
    3.
    发明申请
    MONITORING OF THE POSITION OF A PIPE INSPECTION TOOL IN A PIPELINE 有权
    监测管道中管道检查工具的位置

    公开(公告)号:US20120067126A1

    公开(公告)日:2012-03-22

    申请号:US13054802

    申请日:2009-02-09

    IPC分类号: G01N29/04

    摘要: Apparatus and a method for monitoring of a pipe inspection tool in a pipeline, the apparatus comprising at least one sensor carrier apparatus being locatable along and in close proximity to a pipeline, a plurality of acoustic sensors being locatable on the sensor carrier apparatus, a pipeline inspection tool which is moveable through the pipeline being detectable by means of the acoustic sensors, and the location of the pipeline inspection tool being able to be determined by means of the acoustic sensors.

    摘要翻译: 一种用于监测管道中的管道检查工具的装置和方法,所述装置包括至少一个传感器载体装置,其可沿着并且非常靠近管道定位,多个声学传感器可定位在传感器载体装置上,管道 可通过声学传感器检测可移动通过管道的检查工具,并且能够借助于声学传感器确定管道检查工具的位置。

    Borehole telemetry system
    4.
    发明授权
    Borehole telemetry system 有权
    井眼遥测系统

    公开(公告)号:US09000942B2

    公开(公告)日:2015-04-07

    申请号:US11598459

    申请日:2006-11-13

    IPC分类号: H04B13/02 E21B47/12

    CPC分类号: E21B47/123

    摘要: A telemetry apparatus and method for communicating data from a down-hole location through a borehole to the surface is described including a light source, an optical fiber being placed along the length of the wellbore and receiving light from the light source, a transducer located such as to produce a force field (e.g. a magnetic field) across the optical fiber and its protective hull without mechanical penetration of the hull at the down-hole location, one or more sensors for measuring down-hole conditions and/or parameters, a controller to provide a modulated signal to the magnetic field generator, said modulated signal being under operating conditions representative of measurements by the one or more sensors, and an optical detector adapted to detect changes in the light intensity or polarization of light passing through the fiber.

    摘要翻译: 一种遥测设备和方法,用于将数据从井下位置通过钻孔传送到表面,其包括光源,沿着井眼的长度放置的光纤并且接收来自光源的光,传感器位于 为了在整个光纤及其保护壳体上产生力场(例如磁场),而不会在井下位置机体穿透船体,一个或多个用于测量井下条件和/或参数的传感器,控制器 为了向磁场发生器提供调制信号,所述调制信号处于代表一个或多个传感器的测量值的操作条件下,以及适于检测通过光纤的光的光强度或偏振的变化的光学检测器。

    Redundant Optical Fiber System and Method for Remotely Monitoring the Condition of a Pipeline
    5.
    发明申请
    Redundant Optical Fiber System and Method for Remotely Monitoring the Condition of a Pipeline 有权
    冗余光纤系统和远程监控管道状况的方法

    公开(公告)号:US20110242525A1

    公开(公告)日:2011-10-06

    申请号:US13119231

    申请日:2009-09-23

    IPC分类号: G01N21/00

    摘要: An optical fiber sensor system and method for monitoring a condition of a linear structure such as a pipeline is provided which is capable of providing continuous monitoring in the event of a break in the sensing optical fiber or fibers. The system includes at least one sensing fiber provided along the length of the linear structure, and first and second interrogation and laser pumping sub-systems disposed at opposite ends of the sensing fiber, each of which includes a reflectometer. The reflectometer of the first interrogation and laser pumping sub-system is connected to one end of the sensing fiber. The reflectometer of the second interrogation and laser pumping sub-system is coupled to either (i) an end of a second sensing fiber provided along the length of the linear structure which is opposite from the one end of the first sensing fiber, or (ii) the opposite end of the first sensing fiber. Before any break of the sensing fiber or fibers occurs, each reflectometer redundantly monitors the condition of the linear structure over its entire length. After any such break occurs, each reflectometer will continue to receive signals up to the point of the break from opposite ends of the structure.

    摘要翻译: 提供了一种用于监视诸如管道之类的线性结构的状态的光纤传感器系统和方法,其能够在感测光纤或光纤中断时提供连续的监视。 该系统包括沿着线性结构的长度提供的至少一个感测光纤,以及设置在感测光纤的相对端处的第一和第二询问和激光泵浦子系统,每个检测光纤包括反射计。 第一询问和激光泵送子系统的反射计连接到感测光纤的一端。 第二询问和激光泵送子系统的反射计耦合到(i)沿着与第一感测光纤的一端相对的线性结构的长度设置的第二感测光纤的端部,或者(ii )第一感测光纤的相对端。 在发生感测纤维或纤维的任何断裂之前,每个反射计在其整个长度上冗余地监视线性结构的状态。 在发生任何这种中断之后,每个反射计将继续从结构的相对端接收到断裂点的信号。

    Distributed optical fibre measurements
    6.
    发明申请
    Distributed optical fibre measurements 有权
    分布式光纤测量

    公开(公告)号:US20060245468A1

    公开(公告)日:2006-11-02

    申请号:US10554116

    申请日:2005-03-31

    申请人: Arthur Hartog

    发明人: Arthur Hartog

    IPC分类号: G01K11/00

    CPC分类号: G01K11/32

    摘要: A method of obtaining a distributed measurement comprises deploying an optical fibre in a measurement region of interest, and launching into it a first optical signal at a first wavelength λ0 and a high power level, a second optical signal at a second wavelength λ−1, and a third optical signal at the first wavelength λ0 and a low power level. These optical signals generate backscattered light at the second wavelength λ−1 arising from Raman scattering of the first optical signal which is indicative of a parameter to be measured, at the first wavelength λ0 arising from Rayleigh scattering of the first optical signal, at the second wavelength λ−1 arising from Rayleigh scattering of the second optical signal, and at the first wavelength λ0 arising from Rayleigh scattering of the third optical signal. The backscattered light is detected to generate four output signals, and a final output signal is derived by normalising the Raman scattering signal to a function derived from the three Rayleigh scattering signals, which removes the effects of wavelength-dependent and nonlinear loss.

    摘要翻译: 获得分布式测量的方法包括在感兴趣的测量区域中布置光纤,并向其中发射第一波长λ0和高功率电平的第一光信号,第二光信号 在第二波长λ1 -1和第一波长λ0的第三光信号和低功率电平。 这些光信号产生第二波长λ-1的第二波长λ1 -1的反向散射光,该第二波长λ-1由第一光信号的拉曼散射产生,该第一光信号指示待测量的参数, SUB>由第二光信号的瑞利散射产生的第二波长λ-1 -1的第一光信号的瑞利散射产生,并且在第一波长λ0 < 由第三光信号的瑞利散射引起。 检测到反向散射光以产生四个输出信号,并且通过将拉曼散射信号归一化为从三个瑞利散射信号导出的函数来导出最终输出信号,这消除了波长相关和非线性损耗的影响。

    CONTROLLING A DYNAMIC SIGNAL RANGE IN AN OPTICAL TIME DOMAIN REFLECTOMETRY
    7.
    发明申请
    CONTROLLING A DYNAMIC SIGNAL RANGE IN AN OPTICAL TIME DOMAIN REFLECTOMETRY 失效
    在光时域反射测量中控制动态信号范围

    公开(公告)号:US20080316494A1

    公开(公告)日:2008-12-25

    申请号:US11766866

    申请日:2007-06-22

    IPC分类号: G01N21/47

    CPC分类号: G01M11/3145

    摘要: A technique includes providing an optical source signal to an optical fiber to produce a backscatter signal. A receiver is provided to detect the backscatter signal. During an acquisition period in which the backscatter signal is present, a sensitivity of the receiver is varied with respect to time to regulate an input signal range of an amplifier of the receiver.

    摘要翻译: 一种技术包括向光纤提供光源信号以产生反向散射信号。 提供接收器来检测反向散射信号。 在存在后向散射信号的采集周期期间,接收机的灵敏度相对于调节接收机的放大器的输入信号范围的时间而变化。

    Interferometric method and apparatus for measuring physical parameters
    8.
    发明申请
    Interferometric method and apparatus for measuring physical parameters 失效
    用于测量物理参数的干涉测量方法和装置

    公开(公告)号:US20060146337A1

    公开(公告)日:2006-07-06

    申请号:US10544270

    申请日:2004-01-20

    申请人: Arthur Hartog

    发明人: Arthur Hartog

    IPC分类号: G01B9/02

    摘要: A method of measuring a selected physical parameter at a location within a region of interest comprises the steps of: launching optical pulses at a plurality of reselected interrogation wavelengths into an optical fibber (1) deployed along the region of interest, reflectors (20,21,2n) being arrayed along the optical fibber (1) to form an array (9) of sensor elements, the optical path length between the said reflectors (2) being dependent upon the selected parameter; detecting the returned optical interference signal for each of the reselected wavelengths; and determining from the optical interference signal the absolute optical path length (L) between two reflectors (2) at the said location, and from the optical path length (L) so determined the value of the selected parameter at the said location; wherein the step of determining the absolute optical path length (L) comprises carrying out a process in which the phase difference between the interference signals for a pair of the reselected wavelengths is estimated using an estimated value for the optical path length (L), the estimated phase difference is used to estimate the phase at each of those wavelengths, and the phase thus obtained is used to revise the estimated value for the optical path length (L), the process being repeated for some or all remaining wavelength pairs in sequence, on the basis of the optical path length (L) estimated for the immediately preceding pair in the sequence, thereby to progressively revise the optical path length (L) until it is know to a desired level of accuracy.

    摘要翻译: 一种在感兴趣区域内的位置处测量所选择的物理参数的方法包括以下步骤:将多个重新选择的询问波长的光脉冲发射到沿着感兴趣区域部署的光纤(1)中,反射器(2

    Distributed Temperature Sensing System with Remote Reference Coil
    9.
    发明申请
    Distributed Temperature Sensing System with Remote Reference Coil 审中-公开
    带远程参考线圈的分布式温度传感系统

    公开(公告)号:US20060115204A1

    公开(公告)日:2006-06-01

    申请号:US11164291

    申请日:2005-11-17

    IPC分类号: G02B6/00

    摘要: The invention is an optical fiber distributed temperature sensing system comprising an opto-electronic unit and a sensing optical fiber, which system measures temperature so as to provide a temperature profile along at least part of the length of the optical fiber. The system includes reference coils, which are temperature reference points, at a location that is remote from the opto-electronic unit and closer to the region whose temperature is being measured.

    摘要翻译: 本发明是一种包括光电单元和感测光纤的光纤分布式温度感测系统,该系统测量温度,以沿着光纤长度的至少一部分提供温度分布。 该系统包括作为远离光电单元并且更接近温度测量区域的位置处的温度参考点的参考线圈。

    Distributed fiber optic sensor system with improved linearity
    10.
    发明授权
    Distributed fiber optic sensor system with improved linearity 有权
    分布式光纤传感器系统,线性度提高

    公开(公告)号:US09170149B2

    公开(公告)日:2015-10-27

    申请号:US13221280

    申请日:2011-08-30

    摘要: A fiber optic sensor system includes an optical source to output a first optical signal to launch into an optical fiber, and a coherent detector to mix a coherent Rayleigh backscatter signal generated by the optical fiber in response to the first optical signal with a second optical signal output by the optical source and to generate a mixed output signal. A phase detection and acquisition system determines a phase difference between first and second locations along the optical fiber based on phase information extracted from the mixed output signal and combines the phase information extracted from multiple acquisitions to detect strain on the optical fiber sensor.

    摘要翻译: 光纤传感器系统包括用于输出第一光信号以发射到光纤中的光源,以及相干检测器,用于响应于第一光信号与第二光信号混合由光纤产生的相干瑞利反向散射信号 由光源输出并产生混合输出信号。 相位检测和采集系统基于从混合输出信号提取的相位信息确定沿着光纤的第一和第二位置之间的相位差,并且组合从多个获取中提取的相位信息以检测光纤传感器上的应变。