-
公开(公告)号:US20200062397A1
公开(公告)日:2020-02-27
申请号:US16673355
申请日:2019-11-04
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
-
公开(公告)号:US10464670B2
公开(公告)日:2019-11-05
申请号:US15439871
申请日:2017-02-22
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
-
公开(公告)号:US20180239353A1
公开(公告)日:2018-08-23
申请号:US15439871
申请日:2017-02-22
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
CPC classification number: B64C39/024 , B64C2201/027 , B64C2201/146 , G05D1/063 , G05D1/0858
Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
-
公开(公告)号:US20230271702A1
公开(公告)日:2023-08-31
申请号:US18142773
申请日:2023-05-03
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
CPC classification number: B64C39/024 , G05D1/063 , G05D1/0858 , B64U10/13
Abstract: An aerial vehicle, comprising: one or more motors, one or more sensors, and a flight sub-system. The one or more sensors configured to detect data. The flight sub-system includes an attitude controller module; a rate controller module; and a compensator module. The compensator module is configured to: determine a maximum RPM of the one or more motors or a maximum torque of the one or more motors; receive a torque vector from the rate controller module; determine a rotational speed of the one or more motors to generate a desired flight orientation based upon the torque vector; and consider sensor data from the one or more sensors to adjust the rotational speed of the one or more motors.
-
公开(公告)号:US20210354822A1
公开(公告)日:2021-11-18
申请号:US17331962
申请日:2021-05-27
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
-
公开(公告)号:US11673665B2
公开(公告)日:2023-06-13
申请号:US17331962
申请日:2021-05-27
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
CPC classification number: B64C39/024 , G05D1/063 , G05D1/0858 , B64C2201/027 , B64C2201/146
Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
-
公开(公告)号:US20180105285A1
公开(公告)日:2018-04-19
申请号:US15297903
申请日:2016-10-19
Applicant: GoPro, Inc.
Inventor: Lukas Schmid , Jean-Bernard Berteaux , Fabio Diem , Sammy Omari , Thomas Gubler
CPC classification number: B64D45/00 , B64C39/024 , B64C2201/024 , B64C2201/042 , B64C2201/123 , B64C2201/146 , G05D1/0038
Abstract: The disclosure describes systems and methods for detecting an aerial vehicle landing. One method includes performing at least two of a plurality of landing tests to detect the landing of the aerial vehicle. The plurality of landing tests include a static test, a thrust test, and a shock test. Upon a detection of the landing by one of the at least two landing tests performed, the method further includes performing a free-fall test to detect a free fall of the aerial vehicle. The free fall of the aerial vehicle is a change in altitude of the aerial vehicle above an altitude change threshold. Upon a lack of a detection of the free fall by the free-fall test, the method includes setting a landed state for the aerial vehicle. Upon a detection of the free fall by the free-fall test, the method includes setting an in-air state for the aerial vehicle.
-
公开(公告)号:US20240343424A1
公开(公告)日:2024-10-17
申请号:US18601114
申请日:2024-03-11
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
CPC classification number: B64U50/19 , G05D1/46 , G05D1/854 , B64U10/14 , B64U2201/20
Abstract: An aerial vehicle, comprising: one or more motors, one or more sensors, and a flight sub-system. The one or more sensors configured to detect data. The flight sub-system includes an attitude controller module; a rate controller module; and a compensator module. The compensator module is configured to: determine a maximum RPM of the one or more motors or a maximum torque of the one or more motors; receive a torque vector from the rate controller module; determine a rotational speed of the one or more motors to generate a desired flight orientation based upon the torque vector; and consider sensor data from the one or more sensors to adjust the rotational speed of the one or more motors.
-
公开(公告)号:US11981430B2
公开(公告)日:2024-05-14
申请号:US18142773
申请日:2023-05-03
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
CPC classification number: B64C39/024 , G05D1/063 , G05D1/0858 , B64U10/13 , B64U2201/20
Abstract: An aerial vehicle, comprising: one or more motors, one or more sensors, and a flight sub-system. The one or more sensors configured to detect data. The flight sub-system includes an attitude controller module; a rate controller module; and a compensator module. The compensator module is configured to: determine a maximum RPM of the one or more motors or a maximum torque of the one or more motors; receive a torque vector from the rate controller module; determine a rotational speed of the one or more motors to generate a desired flight orientation based upon the torque vector; and consider sensor data from the one or more sensors to adjust the rotational speed of the one or more motors.
-
公开(公告)号:US11021248B2
公开(公告)日:2021-06-01
申请号:US16673355
申请日:2019-11-04
Applicant: GoPro, Inc.
Inventor: Joseph Anthony Enke , Benjamin Tankersley , Jean-Bernard Berteaux , Axel Murguet , Garance Bruneau
Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
-
-
-
-
-
-
-
-
-