摘要:
An elevator load bearing assembly (20) includes a plurality of cords (22) within a jacket (24). The jacket has a plurality of grooves (32, 34, 36, 38 40) spaced along the length of the belt assembly. Each groove has a plurality of portions (50, 52, 54, 56) aligned at an oblique angle (A, B) relative to a longitudinal axis (48) of the belt (20). In one example, the grooves are separated such that there is no longitudinal overlap between adjacent grooves. In another example, transitions (60, 64) between the obliquely aligned portions are at different longitudinal positions on the belt. Another example includes a combination of the different longitudinal positions and the non-overlapping groove placement.
摘要:
An elevator load bearing assembly (20) includes a plurality of cords (22) within a jacket (24). The jacket has a plurality of grooves (32, 34, 36, 38 40) spaced along the length of the belt assembly. Each groove has a plurality of portions (50, 52, 54, 56) aligned at an oblique angle (A, B) relative to a longitudinal axis (48) of the belt (20). In one example, the grooves are separated such that there is no longitudinal overlap between adjacent grooves. In another example, transitions (60, 64) between the obliquely aligned portions are at different longitudinal positions on the belt. Another example includes a combination of the different longitudinal positions and the non-overlapping groove placement.
摘要:
An elevator system design incorporates a belt having a jacket coating a plurality of elongate load bearing members such as steel cords. The jacket includes a plurality of spaced grooves on at least one side of the belt. The width of the grooves and the size of at least the drive sheave in the system are selected so that a ratio of the groove width to the sheave diameter is within a selected range. In one example, the ratio preferably is less than about 0.05. The grooves also preferably include a fillet at the edges of the grooves where the grooves meet with the sheave-engaging surface on the belt jacket.
摘要:
Turbulators are disclosed for use in a high-stage generator for an exhaust-fired absorption chiller/heater. The turbulators are designed to minimize pressure drop across the turbulator, and thus minimize the efficiency loss to the exhaust source. One turbulator design has a number of flanges extending at a non-normal angle to a central web. Further, some of the flanges have cutout portions. The overall turbulator design is intended to minimize wake downstream of the turbulator blades, which could otherwise cause undesirable pressure drop. A second turbulator design incorporates flanges that extend at a normal angle relative to the central web, but wherein the flanges have a non-rectangular cross-sectional shape. Again, the goal of the turbulator designs here is to minimize wake, and potential pressure drop.
摘要:
This application discloses a control logic for maintaining a proper solution concentration within an absorption chiller. Further, safeguards are added to a system control to ensure robust operation when operated in a co-generation application with a heat source such as a micro-turbine, a reciprocating engine, etc. In such applications, in proper management of the heat flow into the chiller from such sources can result in crystallization of the absorption solution, which would be undesirable. Inventive control logic works to minimize such occurrences.
摘要:
A control for controlling the amount of heated fluid entering the inlet of the driving heat source for a refrigerant absorption cycle is controlled to vary the relative amount of heated fluid entering the driving heat source inlet, and being dumped to atmosphere. Preferably, a diverter valve is utilized such that a first valve body (40) communicates the flow into the driving heat source inlet, and moves in opposition to a second valve body (46) controlling the flow through the exhaust. The two valves bodies (40, 46) are preferably mechanically linked. Since the heated fluid is not allowed to enter the refrigerant absorption cycle as its drive heating source, no additional hardware and control for dumping excess heat is necessary within the refrigerant absorption cycle. A computer control preferably drives the first valve to a precise position and the linkage ensures the second valve is also received at a precise position.
摘要:
This application discloses a control logic for maintaining a proper solution concentration within an absorption chiller. Further, safeguards are added to a system control to ensure robust operation when operated in a co-generation application with a heat source such as a micro-turbine, a reciprocating engine, etc. In such applications, in proper management of the heat flow into the chiller from such sources can result in crystallization of the absorption solution, which would be undesirable. Inventive control logic works to minimize such occurrences.
摘要:
Turbulators are disclosed for use in a high-stage generator for an exhaust-fired absorption chiller/heater. The turbulators are designed to minimize pressure drop across the turbulator, and thus minimize the efficiency loss to the exhaust source. One turbulator design has a number of flanges extending at a non-normal angle to a central web. Further, some of the flanges have cutout portions. The overall turbulator design is intended to minimize wake downstream of the turbulator blades, which could otherwise cause undesirable pressure drop. A second turbulator design incorporates flanges that extend at a normal angle relative to the central web, but wherein the flanges have a non-rectangular cross-sectional shape. Again, the goal of the turbulator designs here is to minimize wake, and potential pressure drop.
摘要:
An absorption chiller system has an efficient start-up control that monitors system condition, and in particular the absorption solution temperature. The system limits the amount of heat delivered into the absorption chiller generator, to provide a gradual rise in the absorption solution temperature at start-up. In this manner, undesirable noise vibration and rapid thermal expansion, which may have occurred in the past is reduced or eliminated.