摘要:
The present invention embodies a technique, referred to as Secure QR Codes, which not only provides aesthetically enhanced QR codes but also allows for security. It can embed a standard black and white QR code, referred to as a public QR code, and a secret QR code, both into a secure QR code. The secure QR code produced is composed of colored cells. The public black and white QR code must first be, either aesthetically enhanced into an enhanced colored QR code, or transformed into a colored QR code with cells of uniform color obtained by transforming each of the black and white cells of the public QR code into cells that takes a color from a subset of possible colors, such that the luminance of each colored cell approximates accurately the black or white luminance values of the public QR code.
摘要:
The present invention embodies a technique, referred to as Secure QR Codes, which not only provides aesthetically enhanced QR codes but also allows for security. It can embed a standard black and white QR code, referred to as a public QR code, and a secret QR code, both into a secure QR code. The secure QR code produced is composed of colored cells. The public black and white QR code must first be, either aesthetically enhanced into an enhanced colored QR code, or transformed into a colored QR code with cells of uniform color obtained by transforming each of the black and white cells of the public QR code into cells that takes a color from a subset of possible colors, such that the luminance of each colored cell approximates accurately the black or white luminance values of the public QR code.
摘要:
The present invention embodies a technique, referred to as Secure QR Codes, which not only provides aesthetically enhanced QR codes but also allows for security. It can embed a standard black and white QR code, referred to as a public QR code, and a secret QR code, both into a secure QR code. The secure QR code produced is composed of colored cells. The public black and white QR code must first be, either aesthetically enhanced into an enhanced colored QR code, or transformed into a colored QR code with cells of uniform color obtained by transforming each of the black and white cells of the public QR code into cells that takes a color from a subset of possible colors, such that the luminance of each colored cell approximates accurately the black or white luminance values of the public QR code.
摘要:
The present invention embodies a technique, referred to as Secure QR Codes, which not only provides aesthetically enhanced QR codes but also allows for security. It can embed a standard black and white QR code, referred to as a public QR code, and a secret QR code, both into a secure QR code. The secure QR code produced is composed of colored cells. The public black and white QR code must first be, either aesthetically enhanced into an enhanced colored QR code, or transformed into a colored QR code with cells of uniform color obtained by transforming each of the black and white cells of the public QR code into cells that takes a color from a subset of possible colors, such that the luminance of each colored cell approximates accurately the black or white luminance values of the public QR code.
摘要:
The present invention embodies a technique to embed a graphic representation and/or a concealed message such as but not limited to two dimensional codes such as quick response (QR) code matrices, fingerprints, coded fingerprint representations, iris imagery, iris coded representation, biometric hashes, palm print or portraits into a QR matrix code. In the case where biometric data such as finger print representation, iris coded representation or biometric hashes are encoded into the embedding, suitable binary representation of those patterns are generated before encoding. These concealed messages can be further encrypted using any cryptographic method such as public or private key or other suitable encrypting mechanisms adapted to the concealed message. For an implementation of the present invention in which a graphic representation is embedded into the code, the embedding process is based on an optimization method by which the color or luminance of the embedding is modified so as to minimize the visual distortion with respect to a reference image while maintaining the probability of decoding error of the standard and concealed code under a predetermined limit.
摘要:
The present invention embodies a technique to embed a graphic representation and/or a concealed message such as but not limited to two dimensional codes such as quick response (QR) code matrices, fingerprints, coded fingerprint representations, iris imagery, iris coded representation, biometric hashes, palm print or portraits into a QR matrix code. In the case where biometric data such as finger print representation, iris coded representation or biometric hashes are encoded into the embedding, suitable binary representation of those patterns are generated before encoding. These concealed messages can be further encrypted using any cryptographic method such as public or private key or other suitable encrypting mechanisms adapted to the concealed message. For an implementation of the present invention in which a graphic representation is embedded into the code, the embedding process is based on an optimization method by which the color or luminance of the embedding is modified so as to minimize the visual distortion with respect to a reference image while maintaining the probability of decoding error of the standard and concealed code under a predetermined limit.
摘要:
A method and apparatus for producing halftone images which utilizes the advantageous stochastic patterning of dots found in frequency-modulated, blue-noise masks, and avoids the problem of dot gain provided in amplitude-modulated masks. Here a green-noise spectrum is used to generate a dither mask and the halftone patterns for each gray-level are subjected to the stacking constraint. The filters used in building the green-noise masks comprise filters using the conventional blue-noise mask for a coarseness parameter M′(g)=1 and filters having a principle frequency fg less than the principle frequency of blue-noise fb when coarseness parameter M′(g)>1. Unlike blue-noise dither patterns, green-noise dither patterns comprise pixel clusters, making them less susceptible to image degradation from dot gain, generating dot-profiles that are visually pleasing to the human eye.
摘要:
Spectral imaging sensors and methods are disclosed. One spectral imaging sensor includes a light source, an array of coded apertures, one or more optical elements, and a photodetector. The light source is configured to emit a plurality of pulses of light toward an object to be imaged. The array of coded apertures is positioned to spatially modulate light received from the object to be imaged. The optical elements are configured to redirect light from the array of coded apertures. The photodetector is positioned to receive light from the one or more optical elements. The photodetector comprise a plurality of light sensing elements. The plurality of light sensing elements are operable to sense the light from the one or more optical elements in a plurality of time periods. The plurality of time periods have a same frequency as the plurality of pulses of light.
摘要:
An image may be quantized into a pattern of dots, e.g., for devices capable of printing dots of variable size and variable color intensity. One may use a pre-determined mapping of the continuous-tone intensity value into a discrete vector of intensity values, and each intensity value may then be processed by a set of binary quantizers. The resulting binary vector may then be mapped into a combination of available dot sizes and color intensities. Through a scalar multiplier, the pre-determined mapping of continuous-tone intensity values may be used as multiple print resolutions.
摘要:
Spectral imaging sensors and methods are disclosed. One spectral imaging sensor includes a light source, an array of coded apertures, one or more optical elements, and a photodetector. The light source is configured to emit a plurality of pulses of light toward an object to be imaged. The array of coded apertures is positioned to spatially modulate light received from the object to be imaged. The optical elements are configured to redirect light from the array of coded apertures. The photodetector is positioned to receive light from the one or more optical elements. The photodetector comprise a plurality of light sensing elements. The plurality of light sensing elements are operable to sense the light from the one or more optical elements in a plurality of time periods. The plurality of time periods have a same frequency as the plurality of pulses of light.