Abstract:
An aircraft beacon light for being mounted to an aircraft fuselage includes: a support structure, having a carrier, and a stem for supporting the carrier and for spacing the carrier from the aircraft fuselage; and a lighting system, supported by the support structure, the lighting system having a plurality of light sources, light optics for redirecting at least a portion of the light emitted by the plurality of light sources, and a lens cover, with the plurality of light sources and the light optics being arranged between the carrier and the lens cover; wherein the aircraft beacon light is configured to emit a red-flashing beacon light output in operation.
Abstract:
An exterior aircraft light unit includes a power input coupleable to an aircraft on-board power supply; at least one LED coupled to the power input for receiving power from the aircraft on-board power supply and configured to emit a light output; an optical sensor arranged for sensing an intensity detection portion of the light output and configured to output a detection signal indicative of an intensity level of the light output; an end of life detector, coupled to the optical sensor for receiving the detection signal and configured to determine an end of life condition; and a fuse circuit coupled to the end of life detector; wherein the fuse circuit is configured to irreversibly disable an LED circuit board upon the end of life detector communicating the end of life condition to the fuse circuit.
Abstract:
An emergency lighting system for an aircraft includes an emergency light control unit, having an external power input and at least one external control input for receiving external control commands from at least one of a cockpit crew, a cabin crew, a board computer and an autopilot, and a plurality of autonomous emergency light units, each of the plurality of autonomous emergency light units comprising at least one LED and a rechargeable capacitor. The emergency light control unit is configured to process the external control commands and to communicate emergency light control commands to the plurality of autonomous emergency light units as a response to the external control commands.
Abstract:
A dimmable LED reading light unit includes a dimming module and an LED module, connected in series. The dimming module has an input being connectable to a power supply supplying direct voltage and includes a potentiometer allowing section of a dimming rate and a current controller providing an operating current for the LED module. The LED module includes at least one LED and a current consumer connected in parallel and the current controller is configured to supply direct current to the LED module that substantially corresponds to the sum of the driving current necessary for driving the at least one LED to emit light with an intensity of illumination corresponding to the dimming rate of the potentiometer, and the current consumption of the current consumer.
Abstract:
A combined wing scan and winglet illumination light unit is disclosed. The light unit has at least one LED and at least one optical structure for shaping a light emission distribution of the combined wing scan and winglet illumination light unit. The wherein the light emission distribution has a first illumination region for illuminating a wing and a wing engine of an aircraft and a second illumination region for illuminating a wing tip winglet of the aircraft.
Abstract:
An aircraft beacon light for being mounted to an aircraft fuselage includes: a support structure, having a carrier, and a stem for supporting the carrier and for spacing the carrier from the aircraft fuselage; and a lighting system, supported by the support structure, the lighting system having a plurality of light sources, light optics for redirecting at least a portion of the light emitted by the plurality of light sources, and a lens cover, with the plurality of light sources and the light optics being arranged between the carrier and the lens cover; wherein the aircraft beacon light is configured to emit a red-flashing beacon light output in operation.
Abstract:
An emergency lighting system for an aircraft includes an emergency light control unit, having an external power input and at least one external control input for receiving external control commands from at least one of a cockpit crew, a cabin crew, a board computer and an autopilot, and a plurality of autonomous emergency light units, each of the plurality of autonomous emergency light units comprising at least one LED and a rechargeable capacitor. The emergency light control unit is configured to process the external control commands and to communicate emergency light control commands to the plurality of autonomous emergency light units as a response to the external control commands.