Abstract:
A computing device includes one or more processors, a user interface, and a non-transitory computer-readable medium storing instructions for determining whether a certain geographic location is within a virtual perimeter of a geographic place. The instructions, when executed on the one or more processors, cause the computing device to determine multiple component shapes that approximately make up a geometry of the geographic place, determine whether the certain geographic location is within at least one of the component shapes, generate an indication that the geographic location is within the virtual perimeter if the geographic location is within at least one of the component shapes, and provide the indication via the user interface.
Abstract:
An autocheck module of a map system is configured to automatically identify anomalous conditions within map data that may indicate an error within the data. The identification of the anomalous conditions is accomplished by application of different autocheck types to the map data, each autocheck type representing a class of anomalies and being triggered if particular map data exhibits the anomalous condition associated with the autocheck type. In one embodiment, for at least some of the portions of map data that trigger an autocheck type, an issue entry is created in an issue database, the issue entry referencing the autocheck type that was triggered, the map data that triggered it, and any associated data of relevance for the particular autocheck type in question.
Abstract:
A computing device includes one or more processors, a user interface, and a non-transitory computer-readable medium storing instructions for determining whether a certain geographic location is within a virtual perimeter of a geographic place. The instructions, when executed on the one or more processors, cause the computing device to determine multiple component shapes that approximately make up a geometry of the geographic place, determine whether the certain geographic location is within at least one of the component shapes, generate an indication that the geographic location is within the virtual perimeter if the geographic location is within at least one of the component shapes, and provide the indication via the user interface.
Abstract:
Aspects of the present disclosure provide techniques for detecting breaks in a wireless network data model. An exemplary method includes determining neighboring access points from scans of network access points in a space. Each neighboring access point occurs together in a scan of a particular level of the space. Wireless data is received from a plurality of mobile devices moving through a space. A set of all access points for the space is identified based on the wireless data. A ratio is derived based on a difference between the neighboring access points and the set of all access points. The ratio represents a percentage of missing access points for the particular level of the space.
Abstract:
Aspects of the present disclosure provide techniques for detecting breaks in a wireless network data model. An exemplary method includes determining neighboring access points from scans of network access points in a space. Each neighboring access point occurs together in a scan of a particular level of the space. Wireless data is received from a plurality of mobile devices moving through a space. A set of all access points for the space is identified based on the wireless data. A ratio is derived based on a difference between the neighboring access points and the set of all access points. The ratio represents a percentage of missing access points for the particular level of the space.