Abstract:
An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The delivery device can include a channel in which a payload mount attachment for a payload can be inserted. The payload mount attachment can include an aperture for receiving a retaining rod to secure the attachment, and thus the payload, to the delivery device. The retaining rod can assume either an engaged position, in which a portion of the retaining rod engages the payload mount attachment while the payload mount attachment is inserted in the channel, or a disengaged position, in which the retaining rod does not engage the payload mount attachment.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The delivery device can include a channel in which a payload mount attachment for a payload can be inserted. The payload mount attachment can include an aperture for receiving a retaining rod to secure the attachment, and thus the payload, to the delivery device. The retaining rod can assume either an engaged position, in which a portion of the retaining rod engages the payload mount attachment while the payload mount attachment is inserted in the channel, or a disengaged position, in which the retaining rod does not engage the payload mount attachment.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using an assembly that secures the payload during descent and releases the payload upon reaching the ground. The assembly can also include a bystander communication module for generating cues for bystander perception. While the assembly securing the payload is being lowered from the UAV, the bystander communication module can generate an avoidance cue indicating that bystanders should avoid interference with the assembly. The assembly also includes sensors that generate data used, at least in part, to determine when the descending assembly is at or near the ground, at which point the assembly releases the payload. The bystander communication module can then cease the avoidance cue and the UAV can retract the assembly.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using an assembly that secures the payload during descent and releases the payload upon reaching the ground. The assembly can also include a bystander communication module for generating cues for bystander perception. While the assembly securing the payload is being lowered from the UAV, the bystander communication module can generate an avoidance cue indicating that bystanders should avoid interference with the assembly. The assembly also includes sensors that generate data used, at least in part, to determine when the descending assembly is at or near the ground, at which point the assembly releases the payload. The bystander communication module can then cease the avoidance cue and the UAV can retract the assembly.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The location of the delivery device can be determined as it is lowered to the ground using image tracking. The UAV can include an imaging system that captures image data of the suspended delivery device and identifies image coordinates of the delivery device, and the image coordinates can then be mapped to a location. The UAV may also be configured to account for any deviations from a planned path of descent in real time to effect accurate delivery locations of released payloads.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The delivery device can include a channel in which a payload mount attachment for a payload can be inserted. The payload mount attachment can include an aperture for receiving a retaining rod to secure the attachment, and thus the payload, to the delivery device. The retaining rod can assume either an engaged position, in which a portion of the retaining rod engages the payload mount attachment while the payload mount attachment is inserted in the channel, or a disengaged position, in which the retaining rod does not engage the payload mount attachment.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using an assembly that secures the payload during descent and releases the payload upon reaching the ground. The assembly can also include a bystander communication module for generating cues for bystander perception. While the assembly securing the payload is being lowered from the UAV, the bystander communication module can generate an avoidance cue indicating that bystanders should avoid interference with the assembly. The assembly also includes sensors that generate data used, at least in part, to determine when the descending assembly is at or near the ground, at which point the assembly releases the payload. The bystander communication module can then cease the avoidance cue and the UAV can retract the assembly.