Abstract:
Map data for generating a digital map of a geographic area is received, the digital map is generated using the received map data, and the digital map is displayed via a user interface. An interactive runway of photographic images corresponding to objects located within the geographic area is generated, the runway being a linear arrangement of the photographic images. Generating the runway includes rating each of the candidate photographic images corresponding to objects located within the within the geographic area using viewing signals related to at least one of the photographic image or an object depicted in the photographic image, and selecting, from among the candidate photographic images, the photographic images for inclusion in the interactive runway, using the rating. The interactive runway is displayed over the digital map.
Abstract:
A user interface for rotating imagery among a plurality of canonical views of a geographic area of interest is disclosed. The interface includes at least one rotation control icon for rotating the imagery among a plurality of canonical views of the geographic area, and a direction indicating portion that indicates a compass direction associated with the canonical view presented on the display device. In particular implementations, the interface can be configured to come into view over the imagery whenever a user navigates to a particular view of the imagery where a plurality of canonical views is available. The motion of the navigation control interface appearing into the imagery is intended to draw attention to the control interface to inform the user that additional canonical views are available.
Abstract:
A user interface for rotating imagery among a plurality of canonical views of a geographic area of interest is disclosed. The interface includes at least one rotation control icon for rotating the imagery among a plurality of canonical views of the geographic area, and a direction indicating portion that indicates a compass direction associated with the canonical view presented on the display device. In particular implementations, the interface can be configured to come into view over the imagery whenever a user navigates to a particular view of the imagery where a plurality of canonical views is available. The motion of the navigation control interface appearing into the imagery is intended to draw attention to the control interface to inform the user that additional canonical views are available.
Abstract:
Map data for generating a digital map of a geographic area is received, the digital map is generated using the received map data, and the digital map is displayed via a user interface. An interactive runway of photographic images corresponding to objects located within the geographic area is generated, the runway being a linear arrangement of the photographic images. Generating the runway includes rating each of the candidate photographic images corresponding to objects located within the within the geographic area using viewing signals related to at least one of the photographic image or an object depicted in the photographic image, and selecting, from among the candidate photographic images, the photographic images for inclusion in the interactive runway, using the rating. The interactive runway is displayed over the digital map.
Abstract:
A user interface for rotating imagery among a plurality of canonical views of a geographic area of interest is disclosed. The interface includes at least one rotation control icon for rotating the imagery among a plurality of canonical views of the geographic area, and a direction indicating portion that indicates a compass direction associated with the canonical view presented on the display device. In particular implementations, the interface can be configured to come into view over the imagery whenever a user navigates to a particular view of the imagery where a plurality of canonical views is available. The motion of the navigation control interface appearing into the imagery is intended to draw attention to the control interface to inform the user that additional canonical views are available.
Abstract:
Map data for generating a digital map of a geographic area is received, the digital map is generated using the received map data, and the digital map is displayed via a user interface. An interactive runway of photographic images corresponding to objects located within the geographic area is generated, the runway being a linear arrangement of the photographic images. Generating the runway includes rating each of the candidate photographic images corresponding to objects located within the within the geographic area using viewing signals related to at least one of the photographic image or an object depicted in the photographic image, and selecting, from among the candidate photographic images, the photographic images for inclusion in the interactive runway, using the rating. The interactive runway is displayed over the digital map.
Abstract:
A user interface for rotating imagery among a plurality of canonical views of a geographic area of interest is disclosed. The interface includes at least one rotation control icon for rotating the imagery among a plurality of canonical views of the geographic area, and a direction indicating portion that indicates a compass direction associated with the canonical view presented on the display device. In particular implementations, the interface can be configured to come into view over the imagery whenever a user navigates to a particular view of the imagery where a plurality of canonical views is available. The motion of the navigation control interface appearing into the imagery is intended to draw attention to the control interface to inform the user that additional canonical views are available.
Abstract:
Map data for generating a digital map of a geographic area is received, the digital map is generated using the received map data, and the digital map is displayed via a user interface. An interactive runway of photographic images corresponding to objects located within the geographic area is generated, the runway being a linear arrangement of the photographic images. Generating the runway includes rating each of the candidate photographic images corresponding to objects located within the within the geographic area using viewing signals related to at least one of the photographic image or an object depicted in the photographic image, and selecting, from among the candidate photographic images, the photographic images for inclusion in the interactive runway, using the rating. The interactive runway is displayed over the digital map.
Abstract:
A user interface for rotating imagery among a plurality of canonical views of a geographic area of interest is disclosed. The interface includes at least one rotation control icon for rotating the imagery among a plurality of canonical views of the geographic area, and a direction indicating portion that indicates a compass direction associated with the canonical view presented on the display device. In particular implementations, the interface can be configured to come into view over the imagery whenever a user navigates to a particular view of the imagery where a plurality of canonical views is available. The motion of the navigation control interface appearing into the imagery is intended to draw attention to the control interface to inform the user that additional canonical views are available.
Abstract:
Embodiments relate to selecting textures for a user-supplied photographic image in image-based three-dimensional modeling. In a first embodiment, a computer-implemented method includes a method for inputting a user-supplied photographic image that uses a photogrammetry algorithm to adjust a plurality of camera parameters for the user-supplied photographic image. In the method, a user-supplied photographic image inputted by a user is received. A set of geographic characteristics inputted by the user that correspond to a geographic location of a camera that took the user-supplied photographic image is received. A plurality of camera parameters that correspond to the geographic location of the camera that took the user-supplied photographic image is determined. The user-supplied photographic image to be texture mapped to the three-dimensional model is enabled.