Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether may be a conductive tether that can transmit electricity and/or electrical signals back and forth between the aerial vehicle and the ground station. The tether termination mount may include one or more gimbals that allow for the tether termination mount to rotate about one or more axis. In a further aspect, the tether termination mount may include a slip ring that allows for rotation of the tether without twisting the tether.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount system. In one aspect, the tether termination mount system may include a tether termination unit configured in one or more gimbals that allow for the tether termination unit to rotate about one or more axes while tracking the aerial vehicle in flight. In a further aspect, the tether termination mount system may include an imaging device configured for imaging the aerial vehicle during flight in order to enhance tracking accuracy over that which is performed by angular motion of the tether termination unit.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether may be a conductive tether that can transmit electricity and/or electrical signals back and forth between the aerial vehicle and the ground station. The tether termination mount may include one or more gimbals that allow for the tether termination mount to rotate about one or more axis. In a further aspect, the tether termination mount may include a slip ring that allows for rotation of the tether without twisting the tether.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount system. In one aspect, the tether termination mount system may include a tether termination unit configured in one or more gimbals that allow for the tether termination unit to rotate about one or more axes while tracking the aerial vehicle in flight. In a further aspect, the tether termination mount system may include an imaging device configured for imaging the aerial vehicle during flight in order to enhance tracking accuracy over that which is performed by angular motion of the tether termination unit.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether may be a conductive tether that can transmit electricity and/or electrical signals back and forth between the aerial vehicle and the ground station. The tether termination mount may include one or more gimbals that allow for the tether termination mount to rotate about one or more axis. In a further aspect, the tether termination mount may include a slip ring that allows for rotation of the tether without twisting the tether.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether may be a conductive tether that can transmit electricity and/or electrical signals back and forth between the aerial vehicle and the ground station. The tether termination mount may include one or more gimbals that allow for the tether termination mount to rotate about one or more axis. In a further aspect, the tether termination mount may include a slip ring that allows for rotation of the tether without twisting the tether.