Abstract:
An Airborne Wind Turbine (“AWT”) may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether has a core and at least one electrical conductor. The tether core may be terminated at a first location in a tether termination mount along an axis of the termination mount, and the at least one electrical conductor may be terminated at a second location in the tether termination mount along the same axis that the core is terminated. This termination configuration may focus tensile stress on the tether to the tether core, and minimize such stress on the at least one electrical conductor during aerial vehicle flight.
Abstract:
Methods and systems are provided to wrap a faired tether around a drum. The tether may be connected to an aerial vehicle. The method may involve guiding a faired tether around an exterior surface of a drum, wherein the drum comprises a helical shaped step around the exterior surface that is configured to mate with at least part of the faired tether, and to stack subsequent layers of wrapped tether in a staggered manner along the longitudinal axis of the drum. The faired tether may be guided onto the step using one or more level winds.
Abstract:
A system includes: a tension member having a first end and a second end, where the first end of the tension member is connected to a first loading member and the second end of the tension member is connected to a second loading member; a first actuator configured to translate the first loading member, such that a tensile load is applied to the tension member along a first direction; a second actuator configured to translate the second loading member in two or more second directions that are substantially transverse to the first direction; and a control system that is configured to control the second actuator, such that the second loading member oscillates between the two or more second directions, where the oscillation of the second loading member causes the tension member to vibrate at a frequency.
Abstract:
A tether may include a core, a plurality of electrical conductors wound around the core, and a jacket surrounding the plurality of electrical conductors. The plurality of electrical conductors may include at least two groups of electrical conductors. Each group of electrical conductors of the at least two groups of electrical conductors may define a respective electrical path, where the respective electrical path is different from the electrical paths defined by other groups of electrical conductors of the at least two groups of the electrical conductors. Moreover, each group of electrical conductors of the at least two groups of electrical conductors is located around a respective portion of the core, such that a cross-section of each group of electrical conductors of the at least two or more electrical conductors defines a respective arc around the respective portion of the core.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount system. In one aspect, the tether termination mount system may include a tether termination unit configured in one or more gimbals that allow for the tether termination unit to rotate about one or more axes while tracking the aerial vehicle in flight. In a further aspect, the tether termination mount system may include an imaging device configured for imaging the aerial vehicle during flight in order to enhance tracking accuracy over that which is performed by angular motion of the tether termination unit.
Abstract:
Methods and systems are provided to wrap a faired tether around a drum. The tether may be connected to an aerial vehicle. The method may involve guiding a faired tether around an exterior surface of a drum, wherein the drum comprises a helical shaped step around the exterior surface that is configured to mate with at least part of the faired tether, and to stack subsequent layers of wrapped tether in a staggered manner along the longitudinal axis of the drum. The faired tether may be guided onto the step using one or more level winds.
Abstract:
A system may include a tether, a slip ring, a tether gimbal assembly, a drive mechanism, a control system. The tether may include a distal tether end coupled to an aerial vehicle, a proximate tether end, and at least one insulated electrical conductor coupled to the aerial vehicle. The slip ring may include a fixed portion and a rotatable portion, where the rotatable portion is coupled to the tether. The tether gimbal assembly may be rotatable about at least one axis and is coupled to the fixed portion of the slip ring. The drive mechanism may be coupled to the slip ring and configured to rotate the rotatable portion of the slip ring. And the control system may be configured to operate the drive mechanism to control twist in the tether.
Abstract:
A system may include a tether, a tether gimbal assembly, a drive mechanism, and a control system. The tether may include a distal end, a proximate end, and at least one conductor. The tether gimbal assembly may be connected to the tether. The drive mechanism may be coupled to the tether gimbal assembly and may include a housing, a spindle, and a motor. The housing may be fixed to the tether gimbal assembly. The spindle may be rotatably coupled to the housing, and the tether may be coupled to the spindle and rotate in conjunction with the spindle. The motor may be coupled to the spindle and configured to rotate the spindle and the tether. And the control system may be configured to operate the drive mechanism to control twist in the tether.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount system. In one aspect, the tether termination mount system may include a tether termination unit configured in one or more gimbals that allow for the tether termination unit to rotate about one or more axes while tracking the aerial vehicle in flight. In a further aspect, the tether termination mount system may include an imaging device configured for imaging the aerial vehicle during flight in order to enhance tracking accuracy over that which is performed by angular motion of the tether termination unit.
Abstract:
A system includes: a tension member having a first end and a second end, where the first end of the tension member is connected to a first loading member and the second end of the tension member is connected to a second loading member; a first actuator configured to translate the first loading member, such that a tensile load is applied to the tension member along a first direction; a second actuator configured to translate the second loading member in two or more second directions that are substantially transverse to the first direction; and a control system that is configured to control the second actuator, such that the second loading member oscillates between the two or more second directions, where the oscillation of the second loading member causes the tension member to vibrate at a frequency.