摘要:
According to one embodiment, a projection system includes a color wheel operable to filter light into a passed component and a reflected component. The projection system also includes a digital micromirror device comprising a plurality of micromirrors each operable to receive the passed component and the reflected component. Each micromirror is selectively positionable to direct, at approximately the same time, the passed component and the reflected component to desired locations. The projection system also includes an optical system operable to direct the passed component and the reflected component from the color wheel to the digital micromirror device at approximately the same time.
摘要:
According to one embodiment, a projection system includes a color wheel operable to filter light into a passed component and a reflected component. The projection system also includes a digital micromirror device comprising a plurality of micromirrors each operable to receive the passed component and the reflected component. Each micromirror is selectively positionable to direct, at approximately the same time, the passed component and the reflected component to desired locations. The projection system also includes an optical system operable to direct the passed component and the reflected component from the color wheel to the digital micromirror device at approximately the same time.
摘要:
Disclosed is a system for adjusting a plurality of component color signals for expanded color gamut displays. The disclosed system comprises an input for receiving the component color signals, a detection circuit (502) connected to the input and configured to detect at least one characteristics of the received component color signals, and an adjustment circuit (504) connected to the input for receiving the component color signal and for creating adjusted component color signals from the received component color signals according to a certain technique, where the certain technique is changed according to the detected characteristic.
摘要:
Disclosed is a telecine system (300) for media conversion of an original format video signal to a new format video signal. The new format video signal is displayed on at least two monitors (303, 307) having different color gamuts so that a colorist (302) can adjust the telecine process in order to produce the new format video signal such that it has acceptable image quality on both of the monitors (303, 307).
摘要:
A method and system for displaying fractional bit data in order to increase the bit depth of a PWM display without requiring the use of an excessive number of bit planes. One embodiment of the present invention combines the outputs of two random number generators (702) with the outputs of a row counter (704) and column counter (706) to yield row and column indexes into two 32×32 cell blue noise masks. The row and column indexes select a blue noise mask threshold for a given pixel. The threshold from the first blue noise mask (708) is applied to a comparator (710) where it is compared to the fractional bit portion of the pixel data. A first blue noise bit, BN(1), is generated based on this comparison. Typically, BN(1) is a “1” when the fractional portion of the pixel data exceeds the threshold value from the mask. The same threshold data is also processed by inverter (712) to produce the threshold that would be shored in an inverted form of Mask A. Inverter (712) prevents the circuitry from having to store four separate blue noise masks. The output of the inverter (712) is also compared to the fractional pixel data to produce a second blue noise bit, BN(2). In the same manner, the second blue noise mask (714) is used to generate two additional blue noise bits. The four blue noise bits are then used alternately in the quad-frame display of FIG. 5 with the integer portion of the pixel data.
摘要:
Disclosed is a system for adjusting a plurality of component color signals for expanded color gamut displays. The disclosed system comprises an input for receiving the component color signals, a detection circuit (502) connected to the input and configured to detect at least one characteristic of the received component color signals, and an adjustment circuit (504) connected to the input for receiving the component color signal and for creating adjusted component color signals from the received component color signals according to a certain technique, where the certain technique is changed according to the detected characteristic.
摘要:
A method and apparatus for correcting the color of an image signal. Data in a first color space such as RGB is converted (502) to primary/secondary/neutral color space by setting neutral color word equal to the minimum of the input values, the primary color word equal to the maximum of the input values minus the neutral color word, and the secondary color word equal to the median of the input values minus the neutral color word. A set of three coefficients is selected (506) for each of the primary color word, the secondary color word, and the neutral color word. The primary, secondary, and neutral color words are then multiplied by the coefficients by a matrix multiplier (504) to yield color-corrected data in the first color space.
摘要:
A method of producing an image. Image data word comprising image data bits for a portion of the image is received at a first frame rate. At least two threshold data values are selected. A first portion of the image data word is compared with the threshold data values. A second portion of said image data word is displayed at a frame rate at least two times said first frame rate. Image data based on the comparison between the first portion of the image data word and the threshold data values is displayed at a frame rate at least two times the first frame rate.
摘要:
This disclosure generally relates to stereoscopic images and stereoscopic video signals, and more specifically relates to encoding, distributing, and decoding stereoscopic images and stereoscopic video signals for use in television and high definition television systems, teleconferencing, picture phones, computer video transmission, digital cinema, as well as in other applications that include storage and/or transmission, over any suitable medium, of still or moving stereoscopic images, or combinations of moving and still stereoscopic images, in a form that is compatible with existing infrastructure, without requiring additional system functionality, while providing a means to allow higher resolution images to be distributed while maintaining compatibility with the existing infrastructure. The techniques hereof can be employed, for example, for distributing stereo 3D movies via optical disk, satellite, broadcast, cable, or internet, using current infrastructure, to consumers.
摘要:
A method and system for communicating and rendering stereoscopic or dual-view images are provided. In one embodiment, a method rendering stereoscopic images includes alternating, on a display, left and right perspectives of an image. Each of the left and right perspectives corresponds to a respective array of pixels on the display such that the left perspective is offset from a right perspective by less than a pixel width. The method further includes shuttering a portion of the light provided from the display in sequence with the alternating of the left and right perspectives if the image.